The past decade has witnessed an unprecedented growth of smart mobile devices and mobile Internet services, which leads to a tremendous increase of mobile traffic in cellular access networks. It becomes a critical challenge for the mobile network operators to efficiently accommodate such a heavy traffic demand. Conventional schemes such as directly upgrading network infrastructures and upgrading access technologies are undesirable due to the need of huge capital investments. By exploiting the multi-tier architecture of cellular networks, on the other hand, it becomes possible to actively offload mobile users’ traffic from macrocells to heterogenous small cells, and hence accommodate the heavy traffic in a cost effective fashion. However, achieving the promising benefits of traffic offloading requires proper radio resource allocations, and thus in this brief, we aim at providing concise discussions regarding radio resource management schemes for traffic offloading in heterogenous cellular networks.

In Chap. 1, we start by providing an overview of the heterogenous cellular networks and traffic offloading. Then, we illustrate different traffic offloading paradigms in heterogeneous cellular networks. To illustrate the designs of optimal radio resource allocations for traffic offloading in heterogeneous cellular networks, we provide two concrete design examples and present the corresponding promising benefits in Chaps. 2 and 3. Specifically, in Chap. 2, we study the paradigm of mobile users’ uplink traffic offloading through small cells, and investigate the joint traffic scheduling and power allocation problem. The problem aims at minimizing mobile users’ overall mobile data cost by properly offloading to small cells while avoiding severe co-channel interference. In Chap. 3, we study the paradigm of downlink traffic offloading via mobile users’ device-to-device (D2D) cooperations for content distribution, and investigate the joint D2D-assisted users’ cooperations and content transmission control problem with the objective of minimizing the overall radio resource usage. Finally, in Chap. 4, we draw conclusions and discuss about future research directions.

This brief illustrates the designs of optimal radio resource allocations for traffic offloading in heterogeneous cellular networks and exhibits the corresponding promising benefits. This brief can be used as a textbook or reference book for
postgraduate students working on advanced topics in wireless communications and networking.

We would like to thank Mr. Yanfei He and Mr. Jiachao Chen from Zhejiang University of Technology for their research contributions to the presented Springer Brief. We also would like to thank all members of BBCR group at the University of Waterloo for their valuable discussions and insightful suggestions. Special thanks are due to the editors at Springer Science+Business Media, Melissa Fearon, Jennifer Malat, and Susan Lagerstrom-Fife for their help throughout the publication preparation process.

This work is supported in part by the National Natural Science Foundation of China (61572440, 61303235, 61379122), and in part by the Zhejiang Provincial Natural Science Foundation of China (LR17F010002, LR16F010003), and in part by the Young Talent Cultivation Project of Zhejiang Association for Science and Technology (2016YCGC011), and in part by the General Research Funds (Project Number CUHK 14202814 and 14219016) established under the University Grant Committee of the Hong Kong Special Administrative Region, China, and in part by the Natural Sciences and Engineering Research Council, Canada.

Hangzhou, China Yuan Wu
Hangzhou, China Li Ping Qian
Shatin, Hong Kong Jianwei Huang
Waterloo, Canada Xuemin (Sherman) Shen
Radio Resource Management for Mobile Traffic Offloading in Heterogeneous Cellular Networks

Wu, Y.; Qian, L.P.; Huang, J.; Shen, X.S.
2017, IX, 78 p. 21 illus., Softcover
ISBN: 978-3-319-51036-1