Contents

1 Overview of Adaptive Dynamic Programming 1
 1.1 Introduction .. 1
 1.2 Reinforcement Learning 3
 1.3 Adaptive Dynamic Programming 7
 1.3.1 Basic Forms of Adaptive Dynamic Programming . . 10
 1.3.2 Iterative Adaptive Dynamic Programming 15
 1.3.3 ADP for Continuous-Time Systems 18
 1.3.4 Remarks 21
 1.4 Related Books 22
 1.5 About This Book 26
References ... 27

Part I Discrete-Time Systems

2 Value Iteration ADP for Discrete-Time Nonlinear Systems 37
 2.1 Introduction .. 37
 2.2 Optimal Control of Nonlinear Systems
 Using General Value Iteration 38
 2.2.1 Convergence Analysis 40
 2.2.2 Neural Network Implementation 48
 2.2.3 Generalization to Optimal Tracking Control 52
 2.2.4 Optimal Control of Systems
 with Constrained Inputs 56
 2.2.5 Simulation Studies 59
 2.3 Iterative θ-Adaptive Dynamic Programming Algorithm
 for Nonlinear Systems 67
 2.3.1 Convergence Analysis 69
 2.3.2 Optimality Analysis 77
 2.3.3 Summary of Iterative θ-ADP Algorithm 80
 2.3.4 Simulation Studies 83
3 Finite Approximation Error-Based Value Iteration ADP

3.1 Introduction .. 91
3.2 Iterative θ-ADP Algorithm with Finite Approximation Errors .. 92
 3.2.1 Properties of the Iterative ADP Algorithm with Finite Approximation Errors 93
 3.2.2 Neural Network Implementation 100
 3.2.3 Simulation Study .. 104
3.3 Numerical Iterative θ-Adaptive Dynamic Programming 107
 3.3.1 Derivation of the Numerical Iterative θ-ADP Algorithm 107
 3.3.2 Properties of the Numerical Iterative θ-ADP Algorithm 111
 3.3.3 Summary of the Numerical Iterative θ-ADP Algorithm 120
 3.3.4 Simulation Study 121
3.4 General Value Iteration ADP Algorithm with Finite Approximation Errors 125
 3.4.1 Derivation and Properties of the GVI Algorithm with Finite Approximation Errors 125
 3.4.2 Designs of Convergence Criteria with Finite Approximation Errors 133
 3.4.3 Simulation Study 140
3.5 Conclusions .. 147
References ... 147

4 Policy Iteration for Optimal Control of Discrete-Time Nonlinear Systems 151
4.1 Introduction .. 151
4.2 Policy Iteration Algorithm 152
 4.2.1 Derivation of Policy Iteration Algorithm 153
 4.2.2 Properties of Policy Iteration Algorithm 154
 4.2.3 Initial Admissible Control Law 160
 4.2.4 Summary of Policy Iteration ADP Algorithm 162
4.3 Numerical Simulation and Analysis 162
4.4 Conclusions .. 173
References ... 174
5 Generalized Policy Iteration ADP for Discrete-Time Nonlinear Systems ... 177
 5.1 Introduction .. 177
 5.2 Generalized Policy Iteration-Based Adaptive Dynamic Programming Algorithm 177
 5.2.1 Derivation and Properties of the GPI Algorithm .. 179
 5.2.2 GPI Algorithm and Relaxation of Initial Conditions .. 188
 5.2.3 Simulation Studies .. 192
 5.3 Discrete-Time GPI with General Initial Value Functions .. 199
 5.3.1 Derivation and Properties of the GPI Algorithm .. 199
 5.3.2 Relaxations of the Convergence Criterion and Summary of the GPI Algorithm 211
 5.3.3 Simulation Studies .. 215
 5.4 Conclusions ... 221
References ... 221

6 Error Bounds of Adaptive Dynamic Programming Algorithms .. 223
 6.1 Introduction ... 223
 6.2 Error Bounds of ADP Algorithms for Undiscounted Optimal Control Problems 224
 6.2.1 Problem Formulation ... 224
 6.2.2 Approximate Value Iteration ... 226
 6.2.3 Approximate Policy Iteration ... 231
 6.2.4 Approximate Optimistic Policy Iteration ... 237
 6.2.5 Neural Network Implementation .. 241
 6.2.6 Simulation Study ... 243
 6.3 Error Bounds of Q-Function for Discounted Optimal Control Problems 247
 6.3.1 Problem Formulation ... 247
 6.3.2 Policy Iteration Under Ideal Conditions ... 249
 6.3.3 Error Bound for Approximate Policy Iteration ... 254
 6.3.4 Neural Network Implementation .. 257
 6.3.5 Simulation Study ... 259
 6.4 Conclusions ... 262
References ... 263

Part II Continuous-Time Systems

7 Online Optimal Control of Continuous-Time Affine Nonlinear Systems .. 267
 7.1 Introduction ... 267
 7.2 Online Optimal Control of Partially Unknown Affine Nonlinear Systems 267
 7.2.1 Identifier–Critic Architecture for Solving HJB Equation .. 269
7.2.2 Stability Analysis of Closed-Loop System 281
7.2.3 Simulation Study 286
7.3 Online Optimal Control of Affine Nonlinear Systems
with Constrained Inputs 291
7.3.1 Solving HJB Equation via Critic Architecture 294
7.3.2 Stability Analysis of Closed-Loop System
with Constrained Inputs 298
7.3.3 Simulation Study 302
7.4 Conclusions .. 305
References ... 306

8 Optimal Control of Unknown Continuous-Time Nonaffine
Nonlinear Systems .. 309
8.1 Introduction .. 309
8.2 Optimal Control of Unknown Nonaffine Nonlinear Systems
with Constrained Inputs 310
8.2.1 Identifier Design via Dynamic Neural Networks 311
8.2.2 Actor–Critic Architecture
for Solving HJB Equation 316
8.2.3 Stability Analysis of Closed-Loop System 318
8.2.4 Simulation Study 323
8.3 Optimal Output Regulation of Unknown Nonaffine Nonlinear
Systems ... 327
8.3.1 Neural Network Observer 328
8.3.2 Observer-Based Optimal Control Scheme
Using Critic Network 333
8.3.3 Stability Analysis of Closed-Loop System 337
8.3.4 Simulation Study 340
8.4 Conclusions .. 343
References ... 343

9 Robust and Optimal Guaranteed Cost Control
of Continuous-Time Nonlinear Systems 345
9.1 Introduction .. 345
9.2 Robust Control of Uncertain Nonlinear Systems 346
9.2.1 Equivalence Analysis and Problem Transformation . 348
9.2.2 Online Algorithm and Neural Network
Implementation ... 350
9.2.3 Stability Analysis of Closed-Loop System 353
9.2.4 Simulation Study 356
9.3 Optimal Guaranteed Cost Control of Uncertain Nonlinear
Systems ... 360
9.3.1 Optimal Guaranteed Cost Controller Design 362
9.3.2 Online Solution of Transformed Optimal Control
Problem ... 368
9.3.3 Stability Analysis of Closed-Loop System 373
9.3.4 Simulation Studies 378
9.4 Conclusions .. 383
References ... 384

10 Decentralized Control of Continuous-Time Interconnected
Nonlinear Systems .. 387
10.1 Introduction .. 387
10.2 Decentralized Control of Interconnected Nonlinear Systems 388
 10.2.1 Decentralized Stabilization via Optimal Control
 Approach .. 389
 10.2.2 Optimal Controller Design of Isolated Subsystems 394
 10.2.3 Generalization to Model-Free
 Decentralized Control 400
 10.2.4 Simulation Studies 404
10.3 Conclusions .. 414
References ... 414

11 Learning Algorithms for Differential Games
of Continuous-Time Systems 417
11.1 Introduction .. 417
11.2 Integral Policy Iteration for Two-Player Zero-Sum Games 418
 11.2.1 Derivation of Integral Policy Iteration 420
 11.2.2 Convergence Analysis 423
 11.2.3 Neural Network Implementation 425
 11.2.4 Simulation Studies 428
11.3 Iterative Adaptive Dynamic Programming for Multi-player
Zero-Sum Games .. 431
 11.3.1 Derivation of the Iterative ADP Algorithm 433
 11.3.2 Properties 438
 11.3.3 Neural Network Implementation 444
 11.3.4 Simulation Studies 451
11.4 Synchronous Approximate Optimal Learning for Multi-player
Nonzero-Sum Games 459
 11.4.1 Derivation and Convergence Analysis 460
 11.4.2 Neural Network Implementation 464
 11.4.3 Simulation Study 473
11.5 Conclusions .. 478
References ... 478
Part III Applications

12 Adaptive Dynamic Programming for Optimal Residential Energy Management ... 483
 12.1 Introduction .. 483
 12.2 A Self-learning Scheme for Residential Energy System Control and Management 484
 12.2.1 The ADHDP Method 488
 12.2.2 A Self-learning Scheme for Residential Energy System .. 489
 12.2.3 Simulation Study 492
 12.3 A Novel Dual Iterative Q-Learning Method for Optimal Battery Management 496
 12.3.1 Problem Formulation 496
 12.3.2 Dual Iterative Q-Learning Algorithm 497
 12.3.3 Neural Network Implementation 503
 12.3.4 Numerical Analysis 506
 12.4 Multi-battery Optimal Coordination Control for Residential Energy Systems 513
 12.4.1 Distributed Iterative ADP Algorithm 515
 12.4.2 Numerical Analysis 527
 12.5 Conclusions .. 533
 References ... 533

13 Adaptive Dynamic Programming for Optimal Control of Coal Gasification Process 537
 13.1 Introduction .. 537
 13.2 Data-Based Modeling and Properties 538
 13.2.1 Description of Coal Gasification Process and Control Systems 538
 13.2.2 Data-Based Process Modeling and Properties 540
 13.3 Design and Implementation of Optimal Tracking Control .. 546
 13.3.1 Optimal Tracking Controller Design by Iterative ADP Algorithm Under System and Iteration Errors 546
 13.3.2 Neural Network Implementation 554
 13.4 Numerical Analysis 557
 13.5 Conclusions .. 568
 References ... 569

14 Data-Based Neuro-Optimal Temperature Control of Water Gas Shift Reaction 571
 14.1 Introduction .. 571
 14.2 System Description and Data-Based Modeling .. 572
 14.2.1 Water Gas Shift Reaction 572
 14.2.2 Data-Based Modeling and Properties 573
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3 Design of Neuro-Optimal Temperature Controller</td>
<td>575</td>
</tr>
<tr>
<td>14.3.1 System Transformation</td>
<td>575</td>
</tr>
<tr>
<td>14.3.2 Derivation of Stable Iterative ADP Algorithm</td>
<td>576</td>
</tr>
<tr>
<td>14.3.3 Properties of Stable Iterative ADP Algorithm</td>
<td>578</td>
</tr>
<tr>
<td>with Approximation Errors and Disturbances</td>
<td></td>
</tr>
<tr>
<td>14.4 Neural Network Implementation for the Optimal Tracking Control</td>
<td>582</td>
</tr>
<tr>
<td>Scheme</td>
<td></td>
</tr>
<tr>
<td>14.5 Numerical Analysis</td>
<td>585</td>
</tr>
<tr>
<td>14.6 Conclusions</td>
<td>589</td>
</tr>
<tr>
<td>References</td>
<td>589</td>
</tr>
<tr>
<td>Index</td>
<td>591</td>
</tr>
</tbody>
</table>
Adaptive Dynamic Programming with Applications in Optimal Control
Liu, D.; Wei, Q.; Wang, D.; Yang, X.; Li, H.
2017, XXX, 594 p. 203 illus., 175 illus. in color., Hardcover
ISBN: 978-3-319-50813-9