Contents

1 Introduction .. 1
 References ... 4

2 Control and Modeling of Microgrids 7
 2.1 Control of AC Microgrids 7
 2.1.1 Control Objectives in AC Microgrids 7
 2.1.2 Primary Control Techniques in AC Microgrids 9
 2.1.3 Secondary Control 28
 2.1.4 Tertiary Control 31
 2.2 Dynamic Modeling of AC Microgrids 32
 2.2.1 Voltage-Controlled Voltage Source Inverters 32
 2.2.2 Current-Controlled Voltage Source Inverters .. 36
 2.3 Control of DC Microgrids 38
 2.3.1 Control Objectives 38
 2.3.2 Standard Control Technique 39
 References ... 41

3 Introduction to Multi-agent Cooperative Control 45
 3.1 Synchronization in Nature, Social Systems, and Coupled Oscillators .. 46
 3.1.1 Synchronization in Animal Motion in Collective Groups .. 46
 3.1.2 Leadership in Animal Groups on the Move 49
 3.1.3 Synchronization in Coupled Oscillators and Electric Power Systems 50
 3.2 Communication Graphs for Interconnected Systems 51
 3.2.1 Graph Matrices–Algebraic Graph Theory 53
7 Cooperative Control for DC Microgrids
7.1 Distributed Cooperative Controller for DC Microgrids
7.1.1 Graphical Representation of DC Microgrids
7.1.2 Cooperative Secondary Control Framework
7.1.3 Voltage Observer
7.2 Analytical Model Development for DC Microgrids
7.2.1 Global Dynamic Model
7.2.2 Guidelines for Controller Design
7.2.3 Steady-State Analysis
7.3 Distributed Adaptive Droop Control for DC Microgrids: An Alternative Solution
7.4 Experimental Performance Evaluation
7.4.1 Design Procedure
7.4.2 Droop Controller Versus Cooperative Controller
7.4.3 Load Change Performance Assessment
7.4.4 Plug-and-Play Capability
7.4.5 Cyber-Link Failure Resiliency
7.5 Summary
Appendix
References

8 Distributed Assistive Control of DC Microgrids
8.1 Introductory of Power Buffer and Distributed Control
8.1.1 Operational Principle of Power Buffer
8.1.2 Distributed Control
8.2 System-Level Modeling of DC Microgrid with Power Buffers
8.3 Multi-player Game for Optimal Control
8.3.1 Microgrid Loads as Players in a Differential Game
8.3.2 Policy Iteration to Solve the Coupled AREs
8.4 Case Studies
8.4.1 Impedance Adjustment by Tuning Buffer Voltage
8.4.2 Steady-State and Small-Signal Decomposition
8.4.3 Conventional Approach: Deactivated Power Buffers 227
8.4.4 Assistive Controller: Single Assisting Neighbor 229
8.4.5 Assistive Controller: Multiple Assisting Neighbors 231
8.4.6 Communication Delay and Channel Bandwidth 231

8.5 Summary .. 233
Appendix .. 233
References ... 236

Index .. 239
Cooperative Synchronization in Distributed Microgrid Control
Bidram, A.; Nasirian, V.; Davoudi, A.; Lewis, F.L.
2017, XVI, 242 p. 129 illus., 68 illus. in color., Hardcover
ISBN: 978-3-319-50807-8