Contents

1 Introduction ... 1
 1.1 What Is This Book About? ... 1
 1.2 Offering Technological Response to World Challenges 1
 1.3 Background and History ... 2
 1.3.1 Creating Distributed Networks 2
 1.3.2 Using Program Mobility 2
 1.3.3 Active Graphs and Networks 3
 1.3.4 Mobile Programs in Active Networks 3
 1.3.5 International Support ... 4
 1.4 The Book Organization .. 5
References ... 8

2 Some Theoretical Background ... 11
 2.1 Introduction ... 11
 2.2 General Systems Theory ... 11
 2.3 System Dynamics ... 13
 2.4 Gestalt Psychology .. 15
 2.5 Memetics Versus Genetics ... 20
 2.6 Brain Waves and Consciousness 21
 2.7 Interoperability Organizations and Their Weakness 23
 2.8 Over-Operability Versus Interoperability in System
 Organization ... 25
 2.9 Conclusion .. 28
References ... 28

3 Spatial Grasp Model ... 31
 3.1 Introduction ... 31
 3.2 Spatial Grasp Model Key Issues 32
 3.2.1 General Idea ... 32
 3.2.2 Parallel Wavelike World Coverage 32
3.2.3 Navigation Pattern’s Modification, Reduction, and Replication .. 33
3.2.4 Spatial Grasp with Echo Processing .. 33
3.2.5 Multisource Matching .. 35
3.2.6 Combining Biological, Sociological, and Psychological Ideas .. 36
3.3 General Organization of Spatial Grasp Language, SGL .. 36
3.3.1 SGL Orientation and Peculiarities .. 36
3.3.2 SGL Recursive Structure .. 37
3.3.3 Constants .. 37
3.3.4 Variables .. 38
3.3.5 Rules .. 38
3.4 More SGL Details .. 38
3.4.1 SGL Worlds .. 39
3.4.2 How SGL Scenarios Evolve .. 39
3.4.3 Sense and Nature of SGL Rules .. 40
3.4.4 The Use of SGL Variables .. 41
3.4.5 SGL Control States and Their Hierarchical Merge .. 42
3.5 Elementary Examples in SGL .. 43
3.6 General Issues of SGL Networked Interpretation .. 52
3.7 Conclusion .. 53

References .. 54

4 SGL Detailed Specification .. 57
4.1 Introduction .. 57
4.2 Full SGL Syntax and Main Constructs .. 57
4.3 SGL Constants .. 60
4.3.1 Information .. 60
4.3.2 Physical Matter .. 60
4.3.3 Custom Constants .. 61
4.3.4 Special Constants .. 61
4.3.5 Compound Constants, Grasps .. 62
4.4 SGL Variables .. 62
4.4.1 Global, Heritable, Frontal, and Nodal Variables .. 62
4.4.2 Environmental Variables .. 62
4.5 SGL Rules .. 66
4.5.1 Movement .. 66
4.5.2 Creation .. 67
4.5.3 Echoing .. 68
4.5.4 Verification .. 70
4.5.5 Assignment .. 70
4.5.6 Advancement .. 71
4.5.7 Branching .. 72
4.5.8 Transference .. 75
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.9</td>
<td>Nodal Variables</td>
</tr>
<tr>
<td>6.3.10</td>
<td>Environmental Variables</td>
</tr>
<tr>
<td>6.3.11</td>
<td>Global Variables</td>
</tr>
<tr>
<td>6.3.12</td>
<td>Incoming Queue</td>
</tr>
<tr>
<td>6.3.13</td>
<td>Outgoing Queue</td>
</tr>
<tr>
<td>6.4</td>
<td>Functional Processors</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Communication Processor</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Parser</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Operation Processors</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Navigation Processor</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Control Processor</td>
</tr>
<tr>
<td>6.4.6</td>
<td>World Access Unit</td>
</tr>
<tr>
<td>6.5</td>
<td>Track-Based Automatic Command and Control</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Track-Based Management Components</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Forward Grasping</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Distribution of Track Structure</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Echoing Via Tracks</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Failed and Blocked Track Branches</td>
</tr>
<tr>
<td>6.5.6</td>
<td>Further World Grasping</td>
</tr>
<tr>
<td>6.5.7</td>
<td>More Advanced Track Infrastructure</td>
</tr>
<tr>
<td>6.6</td>
<td>Examples of Involvement of Interpreter Components</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Transferring Control Messages</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Engagement in Data Processing</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Networked Knowledge Processing</td>
</tr>
<tr>
<td>6.6.4</td>
<td>Movement in Physical Space</td>
</tr>
<tr>
<td>6.7</td>
<td>Integration with Other Systems</td>
</tr>
<tr>
<td>6.8</td>
<td>Conclusions</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

7 Creation, Activation, and Management of a Distributed World

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>7.2</td>
<td>Distributed World Creation</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Elementary Examples</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Creating General Networks</td>
</tr>
<tr>
<td>7.3</td>
<td>Network Distribution</td>
</tr>
<tr>
<td>7.4</td>
<td>World’s Invasion with Mobile Objects</td>
</tr>
<tr>
<td>7.5</td>
<td>Collecting and Exhibiting the History of Navigation</td>
</tr>
<tr>
<td>7.6</td>
<td>Adding Nodal Activity</td>
</tr>
<tr>
<td>7.7</td>
<td>Global Supervision and Inspection</td>
</tr>
<tr>
<td>7.8</td>
<td>Runtime Restructuring of the Active Distributed World</td>
</tr>
</tbody>
</table>
8 Parallel and Distributed Network Operations 159
 8.1 Introduction 159
 8.2 Finding Simple Paths Between Nodes 160
 8.2.1 All Simple Paths 160
 8.2.2 Limited Length Simple Paths 161
 8.2.3 Using Constraints on Links 161
 8.2.4 Constraints on Both Links and Nodes 162
 8.2.5 Taking into Account Orientation of Links 162
 8.2.6 Issuing the Paths in the Final Node 163
 8.3 Creating Shortest Path Tree 163
 8.4 Finding Shortest Path Between Nodes 164
 8.4.1 Single Source Solution 164
 8.4.2 Two-Source Solution 165
 8.5 Moving Physical Matter via the Path Found 166
 8.5.1 Matter Moving Along the Path 167
 8.5.2 Matter Moving Opposite the Path 167
 8.6 Finding Weak and Strong Components in Networks 168
 8.6.1 Finding Weakest Points 168
 8.6.2 Finding Strongest Parts 170
 8.7 Finding Arbitrary Structures in Arbitrary Networks 172
 8.7.1 Exemplary Network and Search Template 172
 8.7.2 Template Representation Based
on a Path Through All Nodes 172
 8.7.3 Template Representation Based on a Path
Through All Links 174
 8.7.4 Networks with Named Nodes and Links 175
 8.7.5 Working with Networks Having Multiple Links
Between Nodes 177
 8.8 Examples of Finding Particular Structures 177
 8.8.1 Example 1: Triangle 178
 8.8.2 Example 2: Two Triangles Sharing a Side 179
 8.8.3 Example 3: Unlimited Expanding Structure 180
 8.9 Conclusion .. 181
References .. 181
9 Solving Societal Problems .. 183
 9.1 Introduction ... 183
 9.2 Social Problems and Social Networks 184
 9.2.1 Social Problems Examples 184
 9.2.2 Human Terrain Concept and Its Relation to Social
 Problems 184
 9.2.3 Social Networks and Their Representation 186
 9.3 Exemplary Social Network Operations 187
 9.3.1 Distributed Counting of the Number of Nodes
 and Links 187
 9.3.2 Finding Paths Between Nodes........................ 188
 9.3.3 Shortest Path Tree and Solutions Based on It 191
 9.3.4 Spatial Centres of Organizations 195
 9.4 Active and Assisted Living 198
 9.5 Emergency Management 200
 9.5.1 Investigating and Relieving Disaster
 Consequences 200
 9.5.2 Collective Evacuation from a Disaster Zone 201
 9.6 Other Societal Tasks Currently Investigated Under SGT 202
 9.7 Conclusion ... 203
References .. 203

10 Automated Command and Control 205
 10.1 Introduction ... 205
 10.2 Purely Semantic Scenario with Automatic Control 206
 10.2.1 Exemplary Task 206
 10.2.2 Three-Doer Task Solution 207
 10.2.3 Task Solution with Other Numbers of Doers 212
 10.3 Dynamic Creation of Distributed Command Infrastructures .. 213
 10.3.1 Hierarchical Operational Infrastructure 214
 10.3.2 Peripheral, Ring Infrastructure 218
 10.4 Withstanding Cruise Missiles 220
 10.4.1 Existing Solutions 220
 10.4.2 Installing SGL Interpreters in Distributed Sensors 221
 10.4.3 Distributed Missile Tracking Scenario in SGL 222
 10.4.4 Withstanding Multiple Attacks 224
 10.5 Networked Night Vision Scenarios 226
 10.5.1 Multiple Spatial Vision of a Particular Object 226
 10.5.2 Multiple Spatial Vision of the Whole Theatre 228
 10.6 Europe-Related Missile Defense Scenario 229
 10.6.1 Missile Defense Main Stages 229
 10.6.2 Missile Defense Management in SGL 232
10.7 High-Level Battle Management in SGL 233
10.7.1 Traditional Battle Management in BML 233
10.7.2 Same Management Scenario in SGL 235
10.8 Distributed Avionics 237
10.9 Conclusion .. 238
References ... 239

11 Collective Robotics 241
11.1 Introduction 241
11.2 Some Modern Robotic Examples 242
11.2.1 Ground Robotics 242
11.2.2 Aerial Robotics 242
11.2.3 Maritime Robotics 243
11.2.4 Collectively Behaving Robots 244
11.2.5 General Demands to Advanced Robotic Systems ... 245
11.3 Integration of Loose Swarming with Hierarchical Command and Control .. 246
11.4 Multi-robot Hospital Service Example 250
11.5 Exploration and Mapping of Unknown Distributed Space 252
11.5.1 Different Mapping Scenarios 253
11.5.2 Finding Optimal Route by the Created Free Space Grid ... 256
11.6 Battling Forest Fires with Robotic Swarms 257
11.7 Coastal Waters Cooperative Patrol 259
11.8 Cooperative Finding of Oil Spill Center 261
11.9 Maritime Massive Robotic Attack 263
11.10 Swarm Against Swarm Aerial Scenario 265
11.11 Cooperative Robotic Forestry and Agriculture 266
11.12 Conclusion .. 272
References ... 272

12 Conclusions ... 275
12.1 General Advantages of the Technology Developed 275
12.2 Contribution to the System Theory and Practice 275
12.3 Some Particular Application Areas 279
12.4 Implementation Issues and Future Plans 282
References ... 282
Managing Distributed Dynamic Systems with Spatial Grasp Technology
Sapaty, P.S.
2017, XVII, 284 p. 215 illus., 167 illus. in color., Hardcover
ISBN: 978-3-319-50459-9