Contents

1 Origin of Level Crossing Method .. 1
 1.1 Prologue .. 1
 1.2 Lindley Recursion for GI/G/1 Wait 3
 1.3 Integral Equation for M/G/1 PDF of Wait via Lindley
 Recursion ... 4
 1.4 Observations and Questions 7
 1.5 Further Properties of Integral Equation for PDF
 of Waiting Time in M/G/1 8
 1.5.1 Connection with Virtual Wait Process 9
 1.5.2 Looking Upward from Level Zero 10
 1.5.3 Integral Equation in Light of the Sample Path 12
 1.6 Basic Level Crossing Theorem for M/G/1 13
 1.6.1 Downcrossing and Upcrossing Rates 13
 1.7 Integral Equation for M/G/1 Waiting Time
 Using Level Crossing Method 16

2 Sample Path and System Point ... 19
 2.1 Introduction ... 19
 2.2 State Space and Sample Paths 20
 2.2.1 Sample Paths 20
 2.2.2 Sample-Path Properties and Jumps 22
 2.3 System Point Motion and Jumps 24
 2.3.1 State Space in the Wide Sense 27
 2.4 State Space a Subset of \(\mathbb{R} \) 28
 2.4.1 Picture of a Subset of \(S \) Over Time 28
 2.4.2 Levels in \(S \) 29
 2.4.3 Sample Path Transitions 30
 2.4.4 System Point (SP) Transitions 31
 2.4.5 Continuous and Jump Crossings 32
 2.4.6 Number of Transitions in a Finite Time Interval ... 33
2.4.7 Principle of Set Balance 35
2.4.8 Rate Balance for Down- and Upcrossings 35
2.4.9 Continuous and Discrete States 36
2.4.10 Hits and Egresses of Levels 38
2.4.11 Principle of Rate Balance for Hits and Egresses ... 40
2.4.12 Hits and Egresses for Discrete States (Atoms) 42

2.5 Transition Types Geometrically 45

3 M/G/1 Queues and Variants 49
3.1 Introduction 49
3.2 Transient Distribution of Wait 49
3.2.1 Derivative $\partial E(D_t(x))/\partial t, x \geq 0$ 50
3.2.2 Derivative $\partial E(U_t(x))/\partial t, x \geq 0$ 52
3.2.3 Level Crossings and Transient CDF of Wait 54
3.2.4 Relating the Transient CDF and Level Crossings ... 55
3.2.5 Downcrossings and Transient PDF of Wait 55
3.2.6 Alternative Proof of $\lim_{t \to \infty} E(D_t(x))/t = f(x)$... 58
3.2.7 Upcrossings and Transient PDF of Wait 60
3.2.8 Integro-differential Equation for PDF of Wait 62
3.2.9 PDF When Arrivals and Service Are Time Dependent .. 64
3.2.10 Steady-State PDF of Wait from Transient PDF 65

3.3 Steady-State Distribution of Wait 66
3.3.1 Alternative LC Equations for PDF of Wait 68
3.3.2 Relating System and Waiting Times Using LC 72

3.4 Waiting Time Properties in Steady State 75
3.4.1 Probability of Zero Wait 75
3.4.2 Pollaczek-Khinchine (P-K) Formula 75
3.4.3 Expected Number in Queue and in System 76
3.4.4 Laplace-Stieltjes Transform (LST) of a PDF 76
3.4.5 Series for PDF of W_q by Inverting $\tilde{f}(s)$ 77
3.4.6 Another Look at System Time 78
3.4.7 Connecting PDFs of System and Waiting Times ... 79
3.4.8 Number in System Probability Distribution 80
3.4.9 Renewal Reward Theorem: Statement 81
3.4.10 Expected Busy Period in M/G/1 82
3.4.11 Equation for $f(x)$ via Renewal Reward Theorem .. 84
3.4.12 Busy Period Structure in Standard M/G/1 85
3.4.13 Probability Distribution of the Busy Period 89
3.4.14 Expected Number Served in Busy Period 89
3.4.15 Inter-Downcrossing Time of a State-Space Level .. 91
3.4.16 Sojourn Below a Level of $\{W(t)\}_{t \geq 0}$ 91
3.4.17 Sojourn Above a Level of $\{W(t)\}_{t \geq 0}$ 92
3.4.18 Hazard Rate of PDF of Waiting Time 94
3.4.19 Sojourn Above a Level and Distribution of Wait 95
3.4.20 Computing $F(x)$ via $E(a_x)$ 96
3.4.21 Events During an Inter-downcrossing Time 98
3.4.22 Boundedness of PDF in Steady State 100

3.5 M/M/1 Queue .. 101
3.5.1 Waiting Time PDF and CDF 101
3.5.2 System Time PDF and CDF 102
3.5.3 Number in System Probability Distribution 103
3.5.4 Expected Busy Period 104
3.5.5 CDF and PDF of Busy Period in M/M/1 104
3.5.6 Geometric Derivation of CDF and PDF of Wait 105
3.5.7 Inter-crossing Time of Level x 106
3.5.8 Number of Crossings of a Level in a Busy Cycle 107
3.5.9 Downcrossings at Different Levels 108
3.5.10 Number Served in a Busy Period 109
3.5.11 Relationship Between M/M/1 and M/M/1/1 109

3.6 M/G/1: Service Time Depending on Wait 111
3.6.1 M/G/1: Zero-Wait Arrivals Get Special Service 113
3.6.2 M/M/1: Zero-Wait Arrivals Get Special Service 115

3.7 Expected Sojourn Above Level x in M/G/1 116

3.8 M/G/1 with Multiple Poisson Inputs 118
3.8.1 Integral Equation for PDF of Wait 119
3.8.2 Expected Wait Before Service 120
3.8.3 Expected Number in Queue 120
3.8.4 Expected Busy Period 120
3.8.5 M/M/1 with Multiple Poisson Inputs 121
3.8.6 Expected Sojourn Above Level $x - E(a_x)$ 123

3.9 M/G/1: Wait-Number Dependent Service 126
3.9.1 Sample Path of $W(t)$ for $t \geq 0$ 127
3.9.2 Integral Equation for PDF of Virtual Wait 128
3.9.3 Exponential Service 129
3.9.4 Workload .. 130

3.10 M/D/1 Queue .. 132
3.10.1 Properties of PDF and CDF of Wait 133
3.10.2 Integral Equation for PDF of Wait 135
3.10.3 Analytic Solution for CDF and PDF of Wait 136
3.10.4 Probability Distribution of Number in System 138

3.11 M/Discrete/1 Queue Aka M/Dn/1 139
3.11.1 Properties of PDF and CDF of Wait 140
3.11.2 Expected Busy Period 142
3.11.3 Integral Equation for PDF of Wait 142
3.11.4 Solution for CDF of Wait 143
3.11.5 Alternative Approach for CDF of Wait .. 143
3.12 M/\(iD\)/1 Queue .. 144
3.12.1 Integral Equation for CDF of Wait .. 145
3.12.2 Recursion for CDF of Wait ... 145
3.12.3 Solution for CDF and PDF of Wait .. 148
3.13 M/G/1: Wait Related Reneging/Balking 149
3.13.1 The Staying Function \(\overline{R}(y), y \geq 0\) 150
3.13.2 Sample Path of \(\{W(t)\}_{t \geq 0}\) 151
3.13.3 M/M/1: Wait Dependent Reneging/Balking 153
3.13.4 M/M/1: Reneging/Balking-Stability Condition 154
3.13.5 M/M/1: Reneging/Balking-Exponential \(\overline{R}(\cdot)\) 158
3.13.6 M/M/1: Reneging/Balking and Standard M/M/1 159
3.13.7 M/M/1: Reneging/Balking-Number in System 160
3.13.8 Proportion of Customers Served ... 161
3.14 M/G/1 with Priorities ... 161
3.14.1 Two Priority Classes .. 161
3.14.2 Integral Equation for \(\{P_0,f_i(x)\}_{x > 0}\) 162
3.14.3 Stability Condition .. 163
3.14.4 Expected Wait of High Priority Customers 163
3.14.5 Equation for PDF of Wait of Type-2 Customers 164
3.14.6 Expected Wait of Type-2 Customers 167
3.14.7 Exponential Service .. 169
3.15 M/G/1 with Server Vacations .. 170
3.15.1 Probability of Zero Wait .. 171
3.15.2 Expected Busy and Idle Period ... 171
3.15.3 Number in System .. 172
3.15.4 M/M/1 with Server Vacations \(\equiv\) \(\text{Exp}_d\) 172
3.16 M/G/1 with Bounded Workload .. 174
3.16.1 Variant 1 ... 174
3.16.2 Variant 1: M/M/1 Model ... 175
3.16.3 Variant 2 ... 175
3.16.4 Variant 2: M/M/1 Model ... 176
3.16.5 Variant 3 ... 177
3.16.6 Variant 3: M/M/1 Model ... 179
3.17 Generalized Beneš Series for PDF of Wait 179
3.17.1 Model Description ... 180
3.17.2 Applying the Renewal Reward Theorem 181
3.17.3 LC Equation for \(\{P_0,f(x)\}_{x \geq 0}\) via a Series 182
3.17.4 Brief Discussion ... 185
4 M/M/c Queue ... 187
4.1 Introduction ... 187
4.2 Theorem B for Transient Analysis ... 188
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>Theorem B</td>
<td>188</td>
</tr>
<tr>
<td>4.3</td>
<td>Generalized M/M/c Queue</td>
<td>190</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Virtual Wait and Server Workload</td>
<td>190</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Sample Paths of Workload and Virtual Wait</td>
<td>191</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Distinguishable Servers</td>
<td>192</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Indistinguishable Servers</td>
<td>193</td>
</tr>
<tr>
<td>4.4</td>
<td>System Configuration</td>
<td>193</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Inter Start-of-service Depart Time S_t</td>
<td>194</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Number of Configurations</td>
<td>195</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Border States</td>
<td>196</td>
</tr>
<tr>
<td>4.4.4</td>
<td>The Next Configuration</td>
<td>197</td>
</tr>
<tr>
<td>4.5</td>
<td>System Point Process</td>
<td>198</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Sample Path of SP Process</td>
<td>201</td>
</tr>
<tr>
<td>4.5.2</td>
<td>A Metaphor for Sample Path and SP Motion</td>
<td>202</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Notation: Probabilities and Distributions</td>
<td>204</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Configuration Just After an Arrival</td>
<td>206</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Sample Path of SP Process Revisited</td>
<td>207</td>
</tr>
<tr>
<td>4.5.6</td>
<td>A Specific Sample Path</td>
<td>209</td>
</tr>
<tr>
<td>4.5.7</td>
<td>SP Process Is Markovian</td>
<td>210</td>
</tr>
<tr>
<td>4.5.8</td>
<td>Departures from Positive-Wait States</td>
<td>213</td>
</tr>
<tr>
<td>4.6</td>
<td>Transient Analysis of Generalized M/M/c</td>
<td>214</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Transient PDF of Wait and Downcrossings</td>
<td>215</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Steady-State PDF of Wait and Downcrossings</td>
<td>216</td>
</tr>
<tr>
<td>4.6.3</td>
<td>SP $m \rightarrow k$ Transitions</td>
<td>217</td>
</tr>
<tr>
<td>4.6.4</td>
<td>SP $m \rightarrow K$ Upcrossings Viewed from “Cover”</td>
<td>218</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Number of Types of $m \rightarrow K$ Upcrossings</td>
<td>218</td>
</tr>
<tr>
<td>4.6.6</td>
<td>Transient PDF of Wait and Upcrossings</td>
<td>219</td>
</tr>
<tr>
<td>4.6.7</td>
<td>Steady-State PDF of Wait and Upcrossings</td>
<td>221</td>
</tr>
<tr>
<td>4.6.8</td>
<td>Equations for Transient PDF of Wait</td>
<td>223</td>
</tr>
<tr>
<td>4.6.9</td>
<td>Equations for Steady-State PDF of Wait</td>
<td>228</td>
</tr>
<tr>
<td>4.6.10</td>
<td>Discussion of Rate Balance in Complex Models</td>
<td>231</td>
</tr>
<tr>
<td>4.7</td>
<td>Example of Steady-State Equations</td>
<td>232</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Equations for Zero-Wait States</td>
<td>233</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Equations for States $((x, \infty), m), m \in M_1$</td>
<td>234</td>
</tr>
<tr>
<td>4.8</td>
<td>Standard M/M/c: Steady-State Analysis</td>
<td>237</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Equations for Steady-State PDF of Wait</td>
<td>238</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Explanation of Equations (4.52) and (4.53)</td>
<td>239</td>
</tr>
<tr>
<td>4.8.3</td>
<td>Solution of Equations</td>
<td>240</td>
</tr>
<tr>
<td>4.8.4</td>
<td>CDF and PDF of Wait Geometrically</td>
<td>242</td>
</tr>
<tr>
<td>4.8.5</td>
<td>PMF of Number in the System</td>
<td>244</td>
</tr>
<tr>
<td>4.8.6</td>
<td>Inter-downcrossing and Sojourn Times</td>
<td>245</td>
</tr>
<tr>
<td>4.9</td>
<td>M/M/c/c and Standard M/M/c Queues</td>
<td>247</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Sample Path of ${W(t), M(t)}_{t \geq 0}$</td>
<td>248</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.1.15</td>
<td>Revisit of M/M/1</td>
<td>309</td>
</tr>
<tr>
<td>5.1.16</td>
<td>Boundedness of PDF of Wait $f(x)$, $x > 0$</td>
<td>311</td>
</tr>
<tr>
<td>5.2</td>
<td>G/M/1: Zero-Waits Receive Special Service</td>
<td>313</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Integral Equations for $f_0(x)$, $f_1(x)$ and $h(x)$</td>
<td>314</td>
</tr>
<tr>
<td>5.2.2</td>
<td>M/M/1 as Special Case of G/M/1</td>
<td>315</td>
</tr>
<tr>
<td>5.3</td>
<td>Multiple-Server G/M/c Queue</td>
<td>316</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Extended Age Process for G/M/c</td>
<td>317</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Steady-State PDF of Virtual Wait</td>
<td>319</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Form of PDF of Wait in G/M/c Geometrically</td>
<td>320</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Partial PDFs of Extended Age for Sheets 0 to $c - 1$</td>
<td>323</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Stability Condition for G/M/c</td>
<td>326</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Form of PDF of Actual Wait $W_{q,i}$</td>
<td>326</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Probability That Actual Wait is Zero: $F_i(0)$</td>
<td>327</td>
</tr>
<tr>
<td>5.4</td>
<td>G/M/2: PDF of Virtual and of Actual Wait</td>
<td>328</td>
</tr>
<tr>
<td>5.4.1</td>
<td>PDF of Virtual Wait</td>
<td>329</td>
</tr>
<tr>
<td>5.4.2</td>
<td>PDF of Actual Wait</td>
<td>331</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Reduction of G/M/2 PDF to M/M/2 PDF</td>
<td>333</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Moments of Actual Wait for G/M/2</td>
<td>334</td>
</tr>
<tr>
<td>5.5</td>
<td>Discussion</td>
<td>335</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Heavy-Tailed Inter-arrivals</td>
<td>335</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Model Variants</td>
<td>335</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>337</td>
</tr>
<tr>
<td>6.2</td>
<td>M/G/r((i)) Dam</td>
<td>337</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Model Description</td>
<td>337</td>
</tr>
<tr>
<td>6.2.2</td>
<td>General Efflux Rate</td>
<td>338</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Sample Paths</td>
<td>339</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Time for ${W(t)}_{t \geq 0}$ to Decrease to a Level</td>
<td>339</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Condition for ${W(t)}_{t \geq 0}$ to Return to Level 0</td>
<td>340</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Transient Probability Distribution of Content</td>
<td>340</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Sample-Path and SP Downcrossings</td>
<td>342</td>
</tr>
<tr>
<td>6.2.8</td>
<td>Level Crossings and Transient PDF of Content</td>
<td>342</td>
</tr>
<tr>
<td>6.2.9</td>
<td>Equation for Transient Distribution of Content</td>
<td>346</td>
</tr>
<tr>
<td>6.2.10</td>
<td>Estimate of Transient Probability $P_0(t)$</td>
<td>346</td>
</tr>
<tr>
<td>6.2.11</td>
<td>Equation for Steady-State PDF of Content</td>
<td>348</td>
</tr>
<tr>
<td>6.2.12</td>
<td>Sojourn Times Related to State-Space Level x</td>
<td>350</td>
</tr>
<tr>
<td>6.2.13</td>
<td>CDF and PDF of Excess of Jump over Level x</td>
<td>352</td>
</tr>
<tr>
<td>6.2.14</td>
<td>Expected Nonempty Period</td>
<td>353</td>
</tr>
<tr>
<td>6.3</td>
<td>M/M/r((i)) Dam</td>
<td>354</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Equation for Steady-State PDF of Content</td>
<td>354</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Solution of Equation (6.40) for PDF of Content</td>
<td>354</td>
</tr>
</tbody>
</table>
6.3.3 Sojourn Times and State-Space Levels 355
6.4 M/M/r(·) Dam with \(r(x) = kx \) 356
6.4.1 PDF of Content and Its Laplace Transform 356
6.4.2 CDF of Content 358
6.4.3 Sojourns with Respect to a Level \(x \) 359
6.5 M/M/r(·) with Special Zero-Content Inputs 361
6.6 Generalization of M/G/r(·) Dam 362
6.6.1 Model and Steady-State Distribution of Content ... 364
6.6.2 SP Downcrossings 365
6.6.3 SP Upcrossings 366
6.6.4 Integral Equation for PDF of Content 366
6.7 r(·)/G/M Dam .. 367
6.7.1 Model Specification and Notation 368
6.7.2 Equation for Transient PDF of Content 368
6.7.3 Equation for Steady-State PDF of Content 369
6.7.4 Sojourn Times Above and Below a Level 370
6.7.5 \(k/G/M \) Dam 372
6.7.6 \(E (\text{Nonempty Period}) \) 373
6.7.7 Probability of Emptiness and PDF of Content 374
6.8 \(\langle S, S \rangle \) Inventory with Product Decay 374
6.8.1 PDF of Inventory with Constant Decay Rate \(k \) ... 375
6.8.2 Equation and Solution for PDF of Inventory 376
6.8.3 Solution of Integral Equation (6.83) 377
6.8.4 Sojourns Above and Below Level \(x \) 380
6.8.5 Replenishments Due to Two Types of Signal 381
6.8.6 Expected Order Size 382
6.8.7 Cost Rate ... 383
6.8.8 Numerical Example 383
6.9 \(\langle S, S \rangle \) Inventory with No Product Decay 384
6.9.1 PDF of Inventory 384
6.9.2 Sojourn Times Above and Below a Level 385
6.9.3 Ordering Characteristics 386
6.9.4 Cost Rate ... 387
7 Multi-dimensional Models 389
7.1 Introduction ... 389
7.2 Models with State Space \(S \) a Subset of \(\mathbb{R}^2 \) 389
7.2.1 Rectangle in \(\mathbb{R}^2 \) 391
7.2.2 Two-Dimensional Levels 392
7.3 Two Products Sharing Limited Storage 393
7.4 Two Products Sharing Storage: Model 1 394
7.4.1 Policies for the Products 394
7.4.2 State Space \(S \) 395
7.4.3 Sample Path ... 396
7.4.4 Integral Equation for Steady-State Joint PDF 398
7.4.5 Solution for Joint PDF of \{I_1(t), I_2(t)\}_{t=\infty} 400

7.5 Two Products Sharing Storage: Model 2 403
7.5.1 Model 2 Description 403
7.5.2 Integral Equation for Joint PDF of Inventory 404
7.5.3 Solution of Integral Equation 406
7.5.4 Marginal PDFs of Stock on Hand 407
7.5.5 Summary ... 408

8 Embedded Level Crossing Method 411
8.1 Dams and Queues .. 411
8.1.1 Embedded Downcrossings and Upcrossings 412
8.1.2 Rate Balance Across a State-Space Level 413
8.1.3 Method of Analysis 413
8.2 GI/G/r(\cdot) Dam .. 413
8.2.1 Embedded Downcrossing Rate 414
8.2.2 Embedded Upcrossing Rate 416
8.2.3 Integral Equation for Steady-State PDF of Content 417
8.2.4 M/G/r(\cdot) Dam 418
8.3 GI/G/1 Queue .. 419
8.3.1 Applications of Embedded LC 420
8.3.2 M/G/1 Queue .. 420
8.3.3 GI/M/1 Queue .. 420
8.3.4 Erlk/M/1 Queue .. 423
8.3.5 D/M/1 Queue .. 424
8.4 M/G/1: Wait Related Reneging/Balking 424
8.4.1 Embedded Level Crossing Probabilities 425
8.4.2 Steady-State PDF of Wait of Stayers 425

9 Level Crossing Estimation 429
9.1 Introduction .. 429
9.1.1 Main Steps of Level Crossing Estimation 429
9.2 Theoretical Basis for LC Estimation 430
9.2.1 Boundedness of Steady-State PDF 431
9.2.2 Role of Level Crossing Theorems in LCE 431
9.2.3 Natural Partition of State Space 433
9.2.4 Step Function for Downcrossings on a Partition ... 434
9.2.5 Ladder Points and LCE Estimates 435
9.3 Computer Program for LCE 436
9.3.1 Designs for a Computer Program 436
9.4 LCE for the M/G/1 Queue 438
9.4.1 Quantities Computed from a Sample Path 438
9.4.2 Point Estimators .. 440
9.4.3 Statistical Properties and Confidence Limits 443
9.5 LCE Example: M/M/1 with Reneging 445
9.5.1 Analytical Solution ... 445
9.5.2 LCE Estimates of PDF and CDF of Wait of Stayers 447
9.5.3 LCE Estimates of Mean of Wait of Stayers and P0 447
9.5.4 Discussion of Numerical Example 449
9.6 Brief Discussion of LCE ... 449
10 Renewal Theory Using LC ... 451
10.1 Replacement Model via Renewal Theory 451
10.1.1 The Model ... 451
10.1.2 Renewal Processes \(\{Z_n\}_{n=0,1,...}\) and \(\{X_n\}_{n=0,1,...}\) 453
10.1.3 The Renewal Process \(\{X_n\}_{n=0,1,...}\) 453
10.1.4 The Renewal Process \(\{Z_n\}_{n=0,1,...}\) 458
10.1.5 Limiting PDFs in Ordinary Renewal Process 460
10.2 A Renewal Problem with Barrier 461
10.2.1 Method for \(E(N_K)\) Using a Regenerative Process 462
10.2.2 Derivation of \(E(N_1)\) ... 464
10.2.3 Derivation of \(E(N_2)\) ... 466
10.2.4 Derivation of \(E(N_3)\) ... 468
10.2.5 Derivation of \(E(N_K)\) for General \(K\) 470
10.2.6 Asymptotic Formula for \(E(N_K)\) as \(K \to \infty\) 471
10.2.7 Number of Renewals Within an Arbitrary Interval 472
10.2.8 Discussion ... 473
10.3 The Time-\(t\) PDFs of a Renewal Process 474
10.3.1 Structure of Regenerative Process \(\{X(s)\}_{s \geq 0}\) 474
10.3.2 Solution of Equation for \(\pi(t), f(t)(x)\) for \(0 < x < t\) 476
10.3.3 Time-\(t\) Probability Distributions of \(\{Z_n\}_{n=1,2,...}\) 477
10.3.4 PDF of Excess Life \(\gamma_t\) .. 477
10.3.5 PDF of \(\{X(s)\}_{s \geq 0}\) Just Before a Jump Over \(t\) 478
10.3.6 PDF of Age \(\delta_t\) ... 479
10.3.7 PDF of Total life \(\beta_t\) ... 479
10.3.8 Example—A Modified Renewal Process 481
11 ADDITIONAL APPLICATIONS of LC 485
11.1 Risk Model: Barrier and Reinvestment 485
11.1.1 Variant of the Cramér-Lundberg Model 486
11.1.2 Extending \(\{X(t)\}\) from \([0, \tau)\) to \([0, \infty)\) 487
Level Crossing Methods in Stochastic Models
Brill, P.H.
2017, XXVII, 559 p. 124 illus., 27 illus. in color., Hardcover
ISBN: 978-3-319-50330-1