Contents

1 Introduction ... 1
 1.1 Objectives ... 1
 1.2 Regulatory Guidance for CMC Applications 1
 1.3 Use of Statistical Tools in Pharmaceutical Development and Manufacturing 2
 1.4 Differences Between Clinical and CMC Statisticians 3
 1.5 How to Use This Book 7
References .. 7

2 Statistical Methods for CMC Applications 11
 2.1 Introduction .. 11
 2.2 Statistical Analysis in a CMC Environment 11
 2.2.1 Initial Client Meeting 12
 2.2.2 Planning of Statistical Analysis 13
 2.2.3 Data Analysis 17
 2.2.4 Communication of Results to Client 20
 2.3 Data Rounding and Reporting of Results 21
 2.4 Use of Tables and Graphs 24
 2.5 Statistical Intervals 29
 2.5.1 Confidence Intervals 29
 2.5.2 Prediction Intervals 30
 2.5.3 Tolerance Intervals 31
 2.5.4 Individual Versus Mean 31
 2.5.5 Formula Notation 31
 2.6 Intervals for One Population (Independent Measurements) 32
 2.6.1 Confidence Interval for Mean 34
 2.6.2 Confidence Interval for Variance 35
 2.6.3 Confidence Interval on the Standard Deviation 35
 2.6.4 Confidence Interval on the Percent Relative Standard Deviation 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.5</td>
<td>Confidence Interval for Proportion Out of Specification</td>
<td>36</td>
</tr>
<tr>
<td>2.6.6</td>
<td>Prediction Interval for the Next Observed Process Value</td>
<td>38</td>
</tr>
<tr>
<td>2.6.7</td>
<td>Tolerance Interval for all Future Process Values</td>
<td>39</td>
</tr>
<tr>
<td>2.6.8</td>
<td>Comparison of Statistical Intervals</td>
<td>41</td>
</tr>
<tr>
<td>2.6.9</td>
<td>Data Sets with LOQ Values</td>
<td>42</td>
</tr>
<tr>
<td>2.6.10</td>
<td>Non-Normal Data</td>
<td>44</td>
</tr>
<tr>
<td>2.7</td>
<td>Intervals for One Population (Dependent Measurements)</td>
<td>48</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Confidence Interval for Mean</td>
<td>51</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Confidence Intervals for Individual Variances, the Sum of the Variances, and the Ratio</td>
<td>51</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Prediction Interval for the Next Observed Process Value</td>
<td>55</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Tolerance Interval for All Future Process Values</td>
<td>56</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Modifications for Unbalanced Designs</td>
<td>56</td>
</tr>
<tr>
<td>2.8</td>
<td>Comparing Two Populations (Independent Measurements)</td>
<td>58</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Confidence Interval for Difference in Means</td>
<td>59</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Confidence Interval for the Effect Size</td>
<td>61</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Confidence Interval for the Ratio of Two Variances</td>
<td>64</td>
</tr>
<tr>
<td>2.9</td>
<td>Confidence Interval for Difference of Means (Dependent Measurements)</td>
<td>65</td>
</tr>
<tr>
<td>2.10</td>
<td>Basics of Hypothesis Testing</td>
<td>67</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Statement of Hypotheses</td>
<td>67</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Testing Errors and Power</td>
<td>68</td>
</tr>
<tr>
<td>2.10.3</td>
<td>Using Confidence Intervals to Conduct Statistical Tests</td>
<td>69</td>
</tr>
<tr>
<td>2.10.4</td>
<td>Using p-Values to Conduct a Statistical Test</td>
<td>69</td>
</tr>
<tr>
<td>2.11</td>
<td>Equivalence Testing</td>
<td>70</td>
</tr>
<tr>
<td>2.12</td>
<td>Regression Analysis</td>
<td>72</td>
</tr>
<tr>
<td>2.12.1</td>
<td>Linear Regression with One Predictor Variable</td>
<td>73</td>
</tr>
<tr>
<td>2.12.2</td>
<td>Checking Regression Assumptions with Residual Plots</td>
<td>80</td>
</tr>
<tr>
<td>2.12.3</td>
<td>Multiple Regression Analysis</td>
<td>81</td>
</tr>
<tr>
<td>2.12.4</td>
<td>Incorporating Interaction and Quadratic Effects</td>
<td>86</td>
</tr>
<tr>
<td>2.12.5</td>
<td>Incorporating Qualitative Predictor Variables</td>
<td>91</td>
</tr>
<tr>
<td>2.12.6</td>
<td>Nonlinear Models Using Variable Transformation</td>
<td>94</td>
</tr>
<tr>
<td>2.12.7</td>
<td>Mixed Models</td>
<td>98</td>
</tr>
<tr>
<td>2.13</td>
<td>Bayesian Models</td>
<td>103</td>
</tr>
<tr>
<td>2.13.1</td>
<td>Expressing Prior Information on Model Parameters</td>
<td>105</td>
</tr>
<tr>
<td>2.13.2</td>
<td>Bayes Rule and the Posterior Distribution</td>
<td>106</td>
</tr>
<tr>
<td>2.13.3</td>
<td>An Example</td>
<td>108</td>
</tr>
</tbody>
</table>
5.3.4 Out of Specification and Corrective and Preventative Action (CAPA) 187
5.4 A CPV Protocol and Relation to Annual Product Review 188
5.5 Statistical Support 190
References 190

6 Analytical Procedures 193
6.1 Introduction 193
6.2 Terminology 194
6.2.1 Description of an Analytical Procedure 194
6.2.2 Measurement Error Models 195
6.2.3 Accuracy 195
6.2.4 Precision 196
6.3 Stage 1: Procedure Development (Pre-validation) 196
6.4 Stage 2: Procedure Performance Validation (Qualification) 197
6.4.1 Experimental Design for Validation of Accuracy and Precision 198
6.4.2 Confidence Intervals for Accuracy and Precision 199
6.4.3 Using Confidence Intervals to Validate Accuracy and Precision 203
6.4.4 Validation Criteria for Accuracy and Precision 204
6.4.5 Validation of Accuracy and Precision Using Statistical Intervals 204
6.4.6 Validation of Accuracy and Precision Based on Out-of-Specification Rates 207
6.4.7 A Bayesian Approach 209
6.4.8 Power Considerations 214
6.4.9 Violation of Homogeneity Across Concentration Levels 215
6.4.10 Experimental Designs to Incorporate Ruggedness Factors 215
6.4.11 Incorporating Fixed Effect Ruggedness Factors 219
6.5 Stage 3: Procedure Performance Verification and Analytical Procedure Transfer 220
6.5.1 Objectives and Regulatory Guidance for Transfers 221
6.5.2 Experimental Designs for Transfers 221
6.5.3 An Equivalence Test for Bias 222
6.5.4 Tests for Precision 223
References 223

7 Specifications 227
7.1 Introduction 227
7.1.1 Definition and Regulatory Expectations 227
7.1.2 Conformance to a Specification 228
7.1.3 Reportable Versus Recordable Results 229
7.2 Considerations in Setting Specifications 230
 7.2.1 Frame of Reference 230
 7.2.2 Incorporation of All Sources of Variation 231
 7.2.3 Small Data Sets for Specification Setting 231
 7.2.4 Disincentive to Improve Process Variation 232
7.3 Compendial Standards and Tests with Commonly Expected Acceptance Limits 232
 7.3.1 Compendial Standards and Specifications 232
 7.3.2 Uniformity of Dosage Units 233
 7.3.3 Blend Uniformity 237
 7.3.4 Dissolution 238
 7.3.5 ASTM 2709/2810 (Bergum/CUDAL Method) 246
 7.3.6 Composite Assay 248
 7.3.7 Protein Concentration 250
7.4 Statistical Tools for Specifications 250
 7.4.1 Amount of Data Needed and How to Collect the Data .. 250
 7.4.2 Data Distribution 251
 7.4.3 Tolerance Intervals and Three Sigma Limits 251
 7.4.4 Simulation 255
 7.4.5 Percentiles 258
7.5 Release and Stability Specifications 259
7.6 Real Time Release/Large Sample Sizes 262
7.7 Incorporation of Clinical Experience 264
7.8 Computer Programs 265

References .. 265

8 Stability .. 269
 8.1 Introduction .. 269
 8.2 Regulatory Guidance 270
 8.3 Modeling Instability 271
 8.3.1 Stability Study Variables 271
 8.3.2 Predictive Stability Models 274
 8.4 Shelf Life Estimation 276
 8.4.1 Definition of Shelf Life 276
 8.4.2 Single Batch 277
 8.4.3 Fixed Batch Analysis of Covariance 280
 8.4.4 Random Batch 288
 8.4.5 Random Batch Approach Using SAS Proc Mixed .. 291
 8.4.6 Considerations with the Traditional Mixed Model Approach 294
 8.4.7 Random Batch Analysis Using Bayesian Analysis .. 295
 8.4.8 Using WinBUGS to Perform a Stability Analysis .. 296
Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry
Burdick, R.K.; LeBlond, D.J.; Pfahler, L.B.; Quiroz, J.; Sidor, L.; Vukovinsky, K.; Zhang, L.
2017, XI, 379 p. 113 illus., 80 illus. in color., Hardcover
ISBN: 978-3-319-50184-0