Contents

1 **Nonlinear Input–Output Stability** 1
 1.1 Input–Output Maps on Extended L_q-Spaces 1
 1.2 L_q-Stability and L_q-Gain; Closed-Loop Stability 4
 1.3 Input–Output Maps from State Space Models 9
 1.4 Notes for Chapter 1 12

2 **Small-Gain and Passivity for Input–Output Maps** 13
 2.1 The Small-Gain Theorem 13
 2.2 Passivity and the Passivity Theorems 17
 2.3 Loop Transformations 26
 2.4 Scattering and the Relation Between Passivity and L_2-Gain 26
 2.5 Notes for Chapter 2 30

3 **Dissipative Systems Theory** 33
 3.1 Dissipative Systems 33
 3.2 Stability of Dissipative Systems 43
 3.3 Interconnections of Dissipative Systems 49
 3.4 Scattering of State Space Systems 51
 3.5 Dissipativity and the Return Difference Inequality 52
 3.6 Notes for Chapter 3 55

4 **Passive State Space Systems** 59
 4.1 Characterization of Passive State Space Systems 59
 4.2 Stability and Stabilization of Passive Systems 65
 4.3 The Passivity Theorems Revisited 69
 4.4 Network Interconnection of Passive Systems 76
 4.5 Passivity of Euler–Lagrange Equations 84
 4.6 Passivity of Second-Order Systems and Riemannian Geometry 86
 4.7 Incremental and Shifted Passivity 94
 4.8 Notes for Chapter 4 97
5 Passivity by Feedback .. 101
 5.1 Feedback Equivalence to a Passive System 101
 5.2 Stabilization of Cascaded Systems 106
 5.3 Stabilization by Backstepping 108
 5.4 Notes for Chapter 5 111

6 Port-Hamiltonian Systems 113
 6.1 Input-State-Output Port-Hamiltonian Systems 113
 6.2 Mechanical Systems 118
 6.3 Port-Hamiltonian Models of Electromechanical Systems .. 125
 6.4 Properties of Port-Hamiltonian Systems 131
 6.5 Shifted Passivity of Port-Hamiltonian Systems 135
 6.6 Dirac Structures 140
 6.7 Port-Hamiltonian DAE Systems 148
 6.8 Port-Hamiltonian Network Dynamics 154
 6.9 Scattering of Port-Hamiltonian Systems 163
 6.10 Notes for Chapter 6 167

7 Control of Port-Hamiltonian Systems 173
 7.1 Stabilization by Interconnection 173
 7.2 Passivity-Based Control 185
 7.3 Control by Energy-Routing 194
 7.4 Notes for Chapter 7 195

8 L_2-Gain and the Small-Gain Theorem 199
 8.1 L_2-Gain of State Space Systems 199
 8.2 The Small-Gain Theorem Revisited 201
 8.3 Network Version of the Small-Gain Theorem 206
 8.4 L_2-Gain as Response to Periodic Input Functions ... 208
 8.5 Relationships with IIS- and iIIS-Stability 209
 8.6 Notes for Chapter 8 211

9 Factorizations of Nonlinear Systems 213
 9.1 Stable Kernel and Image Representations 213
 9.2 L_2-Gain Perturbation Models 219
 9.3 Stable Kernel Representations and Parametrization of Stabilizing Controllers 221
 9.4 All-Pass Factorizations 227
 9.5 Notes for Chapter 9 238

10 Nonlinear H_∞ Control 241
 10.1 State Feedback H_∞ Control 242
 10.2 Output Feedback H_∞ Control 252
 10.3 Notes for Chapter 10 265
11 Hamilton–Jacobi Inequalities .. 269
 11.1 Solvability of Hamilton–Jacobi Inequalities 269
 11.2 An Aside on Optimal Control 281
 11.3 Dissipativity of a Nonlinear System and Its Linearization . 287
 11.4 \mathcal{H}_∞ Control of a Nonlinear System and Its Linearization . 291
 11.5 Notes for Chapter 11 ... 301

References ... 303
Index .. 319
L2-Gain and Passivity Techniques in Nonlinear Control
van der Schaft, A.
2017, XVIII, 321 p. 37 illus., Hardcover
ISBN: 978-3-319-49991-8