
Chapter 2
Formal Preliminaries

Abstract This chapter introduces the formal concepts required for subsequent
chapters. Some notational conventions are maintained and important terms such
as ‘relation’, ‘function’, and ‘structure’ are explicated. The probabilistic concepts
relevant for later chapters are illustrated. I also explain the most important graph-
theoretical concepts and introduce Bayesian networks. Most of the presented
concepts are illustrated by means of simple examples.

2.1 Overview

This chapter introduces the formal concepts required for subsequent chapters. In
Sect. 2.2, some notational conventions are maintained and important terms such
as ‘relation’, ‘function’, and ‘structure’ are explicated within a set theoretical
framework. In Sect. 2.3, the relevant probabilistic concepts as well as some theorems
which will be useful in later chapters are illustrated. Statistical variables are
introduced in Sect. 2.4; the main differences between statistical variables and
predicate constants are highlighted. Next, the notion of a probability distribution
over a set of statistical variables is explicated, followed by demonstrating how the in
Sect. 2.3 introduced probabilistic concepts and theorems can be applied to statistical
variables. In Sect. 2.5 probabilistic dependence/independence relations between
statistical variables and some interrelated notions are introduced. In Sect. 2.6 the
most important graph-theoretical concepts are explained. Last but not least, Sect. 2.7
introduces Bayesian networks, and thus, finally connects graphs to probability
distributions over sets of statistical variables. All theorems and equations presented
in Chap. 2 are stated without proof; most of the presented concepts are illustrated
by means of simple examples. Readers already familiar with these concepts can just
skip the whole chapter.
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2.2 Logic and Set Theory

During the following chapters I presuppose a standard first order logic with identity
in which the symbols ‘:’, ‘^’, and ‘_’ stand for the standard sentential connec-
tives negation, conjunction, and disjunction, respectively, while ‘D’ stands for
identity. The symbols ‘8’ and ‘9’ stand for universal and existential quantification,
respectively. Because plain arrows are reserved for representing causal relations, the
symbols ‘)’ and ‘�’ shall be used for the sentential connectives implication and
equivalence, respectively. Upper-case letters from A to C (‘A’, ‘B’, ‘C’, ‘A1’, ‘B1’,
‘C1’, etc.) are meta-variables for formulae, lower-case letters from a to c (‘a’, ‘b’,
‘c’, ‘a1’, ‘b1’, ‘c1’, etc.) are individual constants, and lower-case letters from u to w
(‘u’, ‘v’, ‘w’, ‘u1’, ‘v1’, ‘w1’, etc.) are individual variables. ‘Q’, ‘R’, ‘Q1’, ‘R1’, etc.
are used for predicate constants. ‘˙’ is used as a meta-symbol so that ‘˙A’ stands
for ‘either A or :A’, while ‘�df ’ and ‘Ddf ’ are used as meta-symbols that indicate
definitions.1

In addition I presuppose a typical set theoretical framework in which ‘2’
stands for the element relation, while ‘f g’ indicates specific sets. Most of the
time, ‘M’, ‘N’, ‘M1’, ‘N1’, etc. will be used for designating sets. ‘;’ stands
for the empty set. The symbols ‘�’ and ‘�’ stand for the relations subset and
proper subset, respectively, while ‘[’, ‘\’, ‘

S
’, ‘

T
’, ‘P’, ‘�’, ‘ N ’, and ‘n’ are

constants for the functions union, intersection, general union, general intersection,
powerset, Cartesian product, complement, and relative complement, respectiveley.
‘h i’ indicates n-tuples, ‘Œ �’ stands for closed and ‘� Œ’ for open interval, and ‘j j’
for cardinality.

2.3 Probability Theory

Basics When specifying a probability function, one typically starts by identifying
a set of elementary events e1; : : : ; en. e1; : : : ; en can, for example, be the possible
outcomes of an experiment. Next one can choose an algebra over fe1; : : : ; eng such
as, for instance, P.fe1; : : : ; eng/.2 Let us call A 2 P.fe1; : : : ; eng/ an event. Then
we can define a probability function P as a function satisfying the following three
axioms of probability calculus:

.1/ 0 � P.A/ � 1

.2/ P.A _ :A/ D 1

.3/ P.A _ B/ D P.A/C P.B/; provided A and B are mutually exclusive (2.1)

1The symbol ‘�df ’ stands for a definition via equivalence, while ‘Ddf ’ stands for a definition via
identity.
2An algebra over a set M is a subset of P.M/ that contains M and is closed under the complement
as well as the union operation.
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Fig. 2.1
P.A/ D P.A^B/CP.A^:B/

Fig. 2.2
P.A/ D

P6
iD1 P.A^ Bi/

According to axiom (1), the probability of an event A lies within the interval Œ0; 1�,
axiom (2) assures that the probability of the sure event equals 1, and axiom (3) tells
us how to compute the probability of an event A_B on the basis of the probabilities
of A and B, provided A and B are mutually exclusive.

Important notions and theorems Let us take a brief look at some interesting
stipulations and theorems of probability calculus. Let us begin with the following
formula that tells us how to compute the probability of A whenever we know the
probabilities of A ^ B and A ^ :B:

P.A/ D P.A ^ B/C P.A ^ :B/ (2.2)

How Equation 2.2 works can be illustrated by means of the diagram in Fig. 2.1. The
areas in the diagram correspond to the probabilities assigned by P. The area of the
whole diagram corresponds to the sure event which gets probability 1. The left half
(area B) of the diagram corresponds to the probability of B (which equals 0:5) and
the right half (area :B) of the diagram corresponds to the probability of :B (which
also equals 0:5). The part of area A that lies in area B corresponds to the probability
of A ^ B, the part of area A that lies in area :B corresponds to the probability of
A^:B, and the whole area A corresponds to the probability of A, i.e., the probability
of A ^ B plus the probability of A ^ :B.

The basic idea behind determining the probability of A by means of the
probabilities of A ^ B and A ^ :B can be generalized to the so-called law of
total probability (see Fig. 2.2 for an illustration by means of a diagram). Whenever
fB1; : : : ; Bng is a set of exhaustive and mutually exclusive events, then:

P.A/ D

nX

iD1

P.A ^ Bi/ (2.3)
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Fig. 2.3 P.AjB/ D
P.A^B/

P.B/

An important probabilistic concept is the concept of conditional probability, which
can be defined for all cases in which P.B/ > 0 holds3:

P.AjB/ Ddf
P.A ^ B/

P.B/
(2.4)

The main idea behind this definition is that the probability of A conditional on B
should equal the probability of A in the light of B, i.e., the probability of A when
B is treated as if it were the sure event. This can be illustrated by means of the
diagram in Fig. 2.3: Like in Fig. 2.1, the area of the whole diagram (i.e., the area
included within the continuous and the dashed lines) corresponds to the sure event,
which gets probability 1, while the areas B and:B correspond to the probabilities of
B and :B, respectively. When conditionalizing on B, we treat B as if it were the sure
event, i.e., as if B would get probability 1. We imagine the area of the whole diagram
to be restricted to area B. The probability of A conditional on B then corresponds to
the ratio of the parts of area A in B to the whole area B.

The so-called product rule, a theorem that allows one to compute the joint
probability of two events A and B on the basis of the conditional probability of
A given B and the probability of B, is a direct consequence of the definition of
conditional probability (Equation 2.4):

P.A ^ B/ D P.AjB/ � P.B/ (2.5)

The product rule can be generalized to the so-called chain rule formula:

P.A1 ^ : : : ^ An/ D P.A1/ � P.A2jA1/ � : : : � P.AnjA1 ^ : : : ^ An�1/ (2.6)

Or equivalently:

P.A1 ^ : : : ^ An/ D

nY

iD1

P.AijA1 ^ : : : ^ Ai�1/ (2.7)

3This restriction is required because division by 0 is undefined.
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As we have seen, the product rule (Equation 2.5) allows us to compute the joint
probability of A ^ B on the basis of the conditional probability of A given B and
the probability of B. But what if we want to know the probability of A? Well, in
that case we just have to sum up the conditional probability of A in the light of B
weighted on B’s probability and the conditional probability of A in the light of :B
weighted on :B’s probability:

P.A/ D P.AjB/ � P.B/C P.Aj:B/ � P.:B/ (2.8)

Equation 2.8 can be illustrated by Fig. 2.1: Since, according to Equation 2.5, P.AjB/�

P.B/ equals P.A^ B/ and P.Aj:B/ � P.:B/ equals P.A^:B/, the part of area A in
B in Fig. 2.1 corresponds to P.AjB/ � P.B/ and the part of area A in :B in Fig. 2.1
corresponds to P.Aj:B/ � P.:B/. The sum of these two parts of A corresponds to
the probability of A.

Equation 2.8 can be generalized to the following law of total probability.
Whenever fB1; : : : ; Bng is a set of exhaustive and mutually exclusive events, then:

P.A/ D

nX

iD1

P.AjBi/ � P.Bi/ (2.9)

An illustration of how Equation 2.9 works (analogously to the one given above
for Equation 2.8 by means of Fig. 2.1) can be given for Equation 2.9 by means of
Fig. 2.2.

The following equation is called Bayes’ theorem:

P.BjA/ D
P.AjB/ � P.B/

P.A/
(2.10)

Bayes’ theorem is a direct consequence of the definition of conditional probability
(Equation 2.4) and the product rule (Equation 2.5).

2.4 Statistical Variables

Basics Statistical variables represent properties at a very abstract level and can
be used like predicate constants in first order logic. In more detail, a statistical
variable is a function that assigns an element of a specified space of exhaustive
and mutually exclusive sets of properties to every individual in a given domain D.
The sets of properties a statistical variable X (I use upper-case letters ‘X’, ‘Y’, ‘Z’,
‘X1’, ‘Y1’, ‘Z1’, etc. from the end of the alphabet for statistical variables) can assign
to individuals in a given domain D are called values of X. In the following, ‘val.X/’
will stand for the set of all values a variable X can assign to individuals u in a given
domain D.
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Statistical variables can be discrete or continuous. While val.X/ of a discrete
variable X is finite, the set of possible values val.X/ of a continuous variable
X is infinite. One special kind of discrete variables are binary variables. Binary
variables are variables with exactly two possible values (1 and 0, yes and no, or
on and off , etc.). Whenever continuous quantities (e.g., weight, mass, length, etc.)
are considered in subsequent chapters, they will be represented by discrete variables
sufficiently fine-grained to match the applied measurement methods. This means
that val.X/ with jval.X/j D nC1 of such a variable X will, for example, be identical
to fŒ0 � "; 1 � "�; �1 � "; 2 � "�; : : : ; �.n� 1/ � "; n � "�; �n � ";1Œg, where " corresponds to
the given measurement accuracy, i.e., " is the smallest measurable quantity given a
certain measurement method. This procedure avoids measure theory and the use of
integrals, which makes the subsequent chapters much more accessible.

Since probabilistic statements containing statistical variables can get very com-
plex and convoluted, I will use the following conventions: Whenever reference to
specific individuals is not necessary, then (i) formulae like ‘P.X.u/ D x/’ can be
replaced by ‘P.X D x/’, while (ii) formulae like ‘P.X D x/’ can be replaced by
‘P.x/’. Instead of the quite long ‘8x 2 val.X/’ and ‘9x 2 val.X/’ it is oftentimes
more convenient to write ‘8x’ and ‘9x’, respectively, for short.

Probability distributions over sets of variables Given a set V of statistical
variables X1; : : : ; Xn, P.X1; : : : ; Xn/ is called a probability distribution over V if and
only if P assigns a value ri 2 Œ0; 1� to every event A 2 val.X1/ � : : : � val.Xn/.
Given a probability distribution P over V D fX1; : : : ; Xng, all kinds of probabilities
can be computed. The probability of the instantiation of a variable Xi to some
value xi, for example, can be computed as

P
A P.A/, where A is an element of

val.X1/ � : : : � val.Xn/ in which xi occurs. The probability of the instantiation
xi1 ; : : : ; xim of more than one variable Xi1 ; : : : ; Xim 2 V is, accordingly, defined asP

A P.A/, where A is an element of val.X1/ � : : : � val.Xn/ in which instantiation
xi1 ; : : : ; xim occurs, etc. In fact, every probability distribution over V gives rise to
a probability function P over P.val.X1/ � : : : � val.Xn//, which is the power set
algebra over the elementary events X1 D x1; : : : ; Xn D xn.

Given a probability distribution P.X1; : : : ; Xn/, for every sequence of statistical
variables Xi1 ; : : : ; Xim a new statistical variable M can be defined. This can be done in
the following way: If we want to introduce a variable M for a sequence of variables
Xi1 ; : : : ; Xim , then the set of possible values of this newly introduced variable M can
be defined as val.M/ D val.Xi1 /� : : :�val.Xim/, and the probabilities of M’s value
instantiations m D hxi1 ; : : : ; ximi are defined as P.xi1 ; : : : ; xim/. In the following I
will often loosely refer to variables M for sequences of variables Xi1 ; : : : ; Xim as a
sequence or set of variables.

Whenever a probability distribution P over a variable set V D fX1; : : : ; Xng

is specified, the corresponding probability distribution P0 for a subset V 0 D
fXi1 ; : : : ; Ximg of V can be defined as P0.Xi1 ; : : : ; Xim/ Ddf P.Xi1 ; : : : ; Xim/. So P0

coincides with P over the value space val.Xi1 / � : : : � val.Xim/. P0 is called P’s
restriction to V 0 and is denoted by ‘P " V 0’.



2.4 Statistical Variables 15

Sometimes it may be convenient to define a probability distribution that is
conditionalized on a certain fixed context M D m, where a context is a set
of variables tied to certain values. We can define such a distribution Pm.X/ as
Pm.X/ Ddf P.Xjm/.

Important notions and theorems The basic axioms of probability calculus as well
as the equations introduced in Sect. 2.3 do also hold for probability distributions over
sets of statistical variables. I will demonstrate this for the following more important
equations and begin with the law of total probability. (The given equations can
be motivated in the same way as their counterparts in Sect. 2.3.) ‘A’ and ‘Bi’ in
Equation 2.3 must be specified to ‘x’ and ‘y’, respectively, where ‘x’ stands for
a value instantiation of a variable X and ‘y’ ranges over the possible values of a
variable Y . (Note that X and Y may also be sets of variables.)

Now the following equation holds in any probability distribution P:

P.x/ D
X

y2val.Y/

P.x; y/ (2.11)

Whenever P.y/ > 0 holds, the conditional probability of x given y for statistical
variables is defined as follows:

P.xjy/ Ddf
P.x; y/

P.y/
(2.12)

The product rule for statistical variables:

P.x; y/ D P.xjy/ � P.y/ (2.13)

The chain rule formula for statistical variables:

P.x1; : : : ; xn/ D P.x1/ � P.x2jx1/ � : : : � P.xnjx1; : : : ; xn�1/ (2.14)

Or equivalently:

P.x1; : : : ; xn/ D

nY

iD1

P.xijx1; : : : ; xi�1/ (2.15)

The law of total probability for statistical variables:

P.x/ D
X

y2val.Y/

P.xjy/ � P.y/ (2.16)
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And last but not least, Bayes’ theorem for statistical variables: Whenever P.x/ > 0,
then:

P.yjx/ D
P.xjy/ � P.y/

P.x/
(2.17)

Equations 2.11, 2.13, 2.14, 2.15, and 2.16 can be generalized for contexts M D m as
follows: If (i) A in the formula P.A/ appearing at the right hand side of the ‘D’ in the
respective equation does have the form : : : j : : :, then just add ‘m’ at the right-hand
side of ‘j’. If (ii) A does not already have the form : : : j : : :, then add ‘jm’ between ‘A’
and the bracket ‘/’. Following this procedure, we get the following conditionalized
versions of the theorems presented before:

P.xjm/ D
X

y2val.Y/

P.x; yjm/ (2.18)

P.x; yjm/ D P.xjy; m/ � P.yjm/ (2.19)

P.x1; : : : ; xnjm/ D P.x1jm/ � P.x2jx1; m/ � : : : � P.xnjx1; : : : ; xn�1; m/ (2.20)

P.x1; : : : ; xnjm/ D

nY

iD1

P.xijx1; : : : ; xi�1; m/ (2.21)

P.xjm/ D
X

y2val.Y/

P.xjy; m/ � P.yjm/ (2.22)

2.5 Correlation and Probabilistic Independence

Probabilistic dependence/independence relations Statistical correlation is a rela-
tion among statistical variables or sets of variables.4 Probabilistic dependence can
be defined with respect to a given probability distribution in the following way:

Definition 2.1 (probabilistic dependence) If P is a probability distribution over
variable set V and X; Y; Z 2 V , then: DEPP.X; YjZ/ �df 9x9y9z.P.xjy; z/ 6D
P.xjz/ ^ P.y; z/ > 0/.

Read ‘DEPP.X; YjZ/’ as ‘X is probabilistically dependent on Y conditional on Z
in P’ or as ‘X and Y are correlated given Z in P’. We will follow the convention to
identify unconditional dependence DEP.X; Y/ with dependence given the empty set
DEP.X; YjZ D ;/.

Probabilistic independence can be defined as the negation of statistical correla-
tion:

4In the following, variables X, Y, Z could also be exchanged by sets of variables X; Y; Z and vice
versa, where these sets X; Y; Z have to be treated as new variables as explained in Sect. 2.4.
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Definition 2.2 (probabilistic independence) If P is a probability distribution over
variable set V and X; Y; Z 2 V , then: INDEPP.X; YjZ/ �df :DEPP.X; YjZ/, i.e.,
8x8y8z.P.xjy; z/ D P.xjz/ _ P.y; z/ D 0/ holds.

Again, we identify unconditional independence INDEP.X; Y/ as independence
given the empty set INDEP.X; YjZ D ;/.

Properties of probabilistic dependence/independence relations The following
properties (which are also called graphoid axioms) hold for all probability distribu-
tions P (Pearl 2000, p. 11; Dawid 1979; Pearl and Paz 1985):

Symmetry: INDEPP.X; YjZ/) INDEPP.Y; XjZ/

Decomposition: INDEPP.X; fY; WgjZ/) INDEPP.X; YjZ/

Weak union: INDEPP.X; fY; WgjZ/) INDEPP.X; YjfZ; Wg/
Contraction: INDEPP.X; YjZ/ ^ INDEPP.X; WjfZ; Yg/) INDEPP.X;fY; WgjZ/

Here is an explanation of the four properties if Z is simply the empty set. In that
case the axiom of symmetry states that Y does not depend on X when X does not
depend on Y . The axiom of decomposition says that whenever X is independent
of both Y and W, then it will also be independent of Y alone. The axiom of weak
union tells us that conditionalizing on W does not render X and Y dependent if X
is independent of both Y and W. The axiom of contraction finally states that X is
independent of both Y and W if X is independent of Y and independent of W when
conditionalizing on Y .

2.6 Graph Theory

Graphs are tools for representing diverse kinds of systems and relations among parts
of these systems. A graph G is an ordered pair hV; Ei, where V is a set consisting of
any objects. The elements of V are called the vertices of the graph. E is a set of so-
called edges. The edges of a graph are typically lines and/or arrows (possibly having
different kinds of heads and tails) that connect two vertices and capture diverse
relations among objects in V . One advantage of graphs is that they can represent
the structure of a system in a very vivid way: Whenever the domain of objects we
are interested in is finite and the relations among these objects we want to represent
are binary, then we can draw a corresponding graph. An example: Suppose we are
interested in a population M of five people a1, a2, a3, a4, and a5 and in the supervisor
relation Q. Suppose further that a1 is a supervisor of a3, that a2 is a supervisor
of a3 and a4, and that a3 and a4 are supervisors of a5. Thus, the structure of the
system is hM; Qi, where Q D fha1; a3i; ha2; a3i; ha2; a4i; ha3; a5i; ha4; a5ig. To draw
a graph G D hV; Ei capturing this structure this graph’s vertex set V should be
identical to M. In addition, we need to make some conventions about how E and Q
are connected. In our example, let us make the following conventions:
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Fig. 2.4 A graph
representing structure hM; Qi

Fig. 2.5 A graph
representing a class of
structures, viz.
fhM; Qi; hM; Q0ig

• u — v in G if and only if Q.u; v/ _ Q.v; u/.
• u �! v if and only if Q.u; v/ ^ :Q.v; u/.

Now we can represent the supervisor relation in population M by graph G D
hV; Ei, where V D M and E D fa1 �! a3; a2 �! a3; a2 �! a4; a3 �! a5; a4 �!

a5g (see also Fig. 2.4). According to the two conventions about how E and Q are
connected, we can uniquely determine G on the basis of hM; Qi as well as hM; Qi
on the basis of G. Another nice feature of graphs is that they can represent more than
one structure—they can capture a whole class of structures. The graph in Fig. 2.5,
for instance, represents, according to the conventions made above, hM; Qi as well
as hM; Q0i with Q0 D fha1; a3i; ha3; a2i; ha2; a4i; ha3; a5i; ha4; a5ig.5

After giving some ideas of what can be done by means of graphs, I will give
a brief overview of the graph theoretical terminology relevant for the subsequent
chapters: A graph G D hV; Ei is called a cyclic graph if there is at least one chain
of edges of the form u �! : : : �! u in G; otherwise it is called an acyclic graph.
A graph G D hV; Ei is called an undirected graph if all edges in E have the form
u — v. A graph G D hV; Ei including different kinds of edges (e.g., ‘�!’ and ‘—’)
is called a mixed graph. A graph G D hV; Eiwhose set of edges E does only contain
directed edges (‘�!’) is called a directed graph. Graphs that are directed as well
as acyclic are called directed acyclic graphs (or DAGs for short). If V is a set of

5hM; Q00i with Q00 D fha1; a3i; ha2; a3i; ha2; a4i; ha3; a2i; ha3; a5i; ha4; a5ig is excluded because
of the implicit assumption that the supervisor relation is asymmetric.
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vertices and all pairs of vertices in V are connected by an edge in graph G D hV; Ei,
then G is called a complete graph over V .

If two vertices in a graph are connected by an edge, then they are called adjacent.
A chain � of any kind of edges of the form u — : : : — v in a graph G D hV; Ei
(where u; v 2 V) is called a path between u and v in G. A path � between u and
v that contains a subpath of the form w1 �! w2  � w3 is called a collider path
between u and v with w2 as a collider on this path � and is represented by ‘u �! �
v’. A path � of the form u �! : : : �! v is called a directed path in G going from
u to v and is represented via ‘u �!�! v’. ‘u ��!v’ stands short for a direct cycle �

of the form u �! v �! u, while ‘u � ��!�!v’ is short for a (direct or indirect) cycle
� of the form u �!�! v �!�! u.

If the set of edges of a graph contains one or more arrows, the following family-
terminology can be used for describing several relations among objects in G’s
vertice set V: Whenever u and v are connected by a directed path � (u �!�! v) in
G D hV; Ei, then u is called an ancestor of v in G and v is called a descendant of u
in G. The set of all ancestors of a vertex u shall be referred to via ‘AnchV;Ei.u/’, while
‘DeshV;Ei.u/’ is used to designate the set of descendants of u. A path � between u
and v of the form u  � � w �!�! v such that no vertex on � appears more
often than once on � is called a common ancestor path between u and v (with w
as a common ancestor of u and v) and is represented by ‘u  ��! v’. Whenever
u �! v holds in G, then u is called a parent of v, while v is called a child of u.
‘ParhV;Ei.u/’ shall stand for the set of parents of u while ‘ChihV;Ei.u/’ shall refer to
the set of children of u in graph G.

2.7 Bayesian Networks

Markovian parents Bayesian networks were originally developed to compactly
represent probability distributions and to simplify probabilistic reasoning (Neapoli-
tan 1990; Pearl 1988). The main idea behind the concept of a Bayesian network is
the following: As seen in Sect. 2.4, a probability distribution P over a set of variables
V is specified by assigning a value ri 2 Œ0; 1� to every instantiation V D v. Since
jval.V/j becomes horribly large even if V contains only a few variables, a lot of
space would be required to write the whole probability distribution down, while
computing probabilities for specific events M D m (with M � V) can consume a lot
of time and resources. So is there any possibility to store probability distributions
in a more compact way? The formalism of Bayesian networks provides a positive
answer to this question (provided the corresponding graph is sparse; for details
see below). According to the chain rule formula (Equation 2.14), P.x1; : : : ; xn/ DQn

iD1 P.xijx1; : : : ; xi�1/ holds for arbitrary value instantiations x1; : : : ; xn of arbitrary
orderings of variables X1; : : : ; Xn 2 V , and thus, we can specify a probability
distribution also by assigning values ri 2 Œ0; 1� to every possible value xi of every
variable Xi 2 V conditional on all possible combinations of values x1; : : : ; xi�1 of
Xi’s predecessors X1; : : : ; Xi�1 in the given ordering.
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Table 2.1 Exemplary
probability distribution P over
V = {X, Y , Z}

P.x1; y1; z1/ D 9

32

P.x1; y1; z2/ D 3

32

P.x1; y2; z1/ D 2

32

P.x1; y2; z2/ D 2

32

P.x2; y1; z1/ D 6

32

P.x2; y1; z2/ D 2

32

P.x2; y2; z1/ D 4

32

P.x2; y2; z2/ D 4

32

Table 2.2 Application of the
chain rule formula to P

P.x1; y1; z1/ D P.x1/ � P.y1jx1/ � P.z1jx1; y1/ D 9

32

P.x1; y1; z2/ D P.x1/ � P.y1jx1/ � P.z2jx1; y1/ D 3

32

P.x1; y2; z1/ D P.x1/ � P.y2jx1/ � P.z1jx1; y2/ D 2

32

P.x1; y2; z2/ D P.x1/ � P.y2jx1/ � P.z2jx1; y2/ D 2

32

P.x2; y1; z1/ D P.x2/ � P.y1jx2/ � P.z1jx2; y1/ D 6

32

P.x2; y1; z2/ D P.x2/ � P.y1jx2/ � P.z2jx2; y1/ D 2

32

P.x2; y2; z1/ D P.x2/ � P.y2jx2/ � P.z1jx2; y2/ D 4

32

P.x2; y2; z2/ D P.x2/ � P.y2jx2/ � P.z2jx2; y2/ D 4

32

Table 2.3 P can also be
specified by the conditional
probabilities above

P.x1/ D 1
2

P.y1jx1/ D 3
4

P.z1jx1; y1/ D 3

4

P.y1jx2/ D 1
2

P.z1jx1; y2/ D 1

2

P.z1jx2; y1/ D 3

4

P.z1jx2; y2/ D 1

2

Here is an example demonstrating how this procedure can be used to store
probability distributions in a more compact way: Assume X, Y , and Z are binary
variables with val.X/ D fx1; x2g, val.Y/ D fy1; y2g, and val.Z/ D fz1; z2g. Assume
further that P is a probability distribution over V D fX; Y; Zg determined by the
equations in Table 2.1. Here we need eight equations, one for each elementary event,
to specify P. Given the ordering X; Y; Z, the equations in Table 2.2 hold due to
the chain rule formula (Equation 2.14). It follows that P can also be specified by
the factors appearing in the equations in Table 2.2, i.e., by the seven equations in
Table 2.3.

We can write down P in an even more compact way. For this purpose, the notion
of the set of the Markovian parents (ParM) of a variable Xi in a given ordering
X1; : : : ; Xn will be helpful (cf. Pearl 2000, p. 14):

Definition 2.3 (Markovian parents) If P is a probability distribution over variable
set V and X1; : : : ; Xn is an ordering of the variables in V , then for all Xi 2 V and
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M � V: M is the set of Markovian parents of Xi if and only if M is the narrowest
subset of fX1; : : : ; Xi�1g for which INDEPP.Xi; fX1; : : : ; Xi�1gjM/ holds.

In other words, the set of Markovian parents of a variable Xi in a given ordering
X1; : : : ; Xn is the narrowest subset of fX1; : : : ; Xi�1g such that conditionalizing on
ParM.Xi/ makes Xi probabilistically independent of all its predecessors X1; : : : ; Xi�1

in this ordering.
Let us now have a closer look at how specifying P in the example discussed

above can be simplified by Definition 2.3: Since there are no predecessors of
X, ParM.X/ is the empty set. ParM.Y/ cannot be the empty set since P.y1/ D

P.y1jx1/ � P.x1/ C P.y1jx2/ � P.x2/ D 3
4
� 1

2
C 1

2
� 1

2
D 5

8
6D 3

4
D P.y1jx1/

holds, and thus, DEPP.X; Y/. It follows trivially from the definition of conditional
probabilistic dependence (Definition 2.2) that Y is probabilistically independent
of fXg conditional on fXg, and thus, ParM.Y/ must be fXg. Since the following
equations hold due to Equations 2.16 and 2.17, we get INDEPP.Z; fX; YgjfYg/ with
Definition 2.2, and hence, fYg seems to be a good candidate for the set of Markovian
parents of Z:

P.z1jy1/ D P.z1jx1; y1/ � P.x1jy1/C P.z1jx2; y1/ � P.x2jy2/

D P.z1jx1; y1/ �
P.y1jx1/ � P.x1/

P.y1/
C P.z1jx2; y1/ �

P.y1jx2/ � P.x2/

P.y1/

D P.z1jx1; y1/ �
P.y1jx1/ � P.x1/

P.y1jx1/ � P.x1/C P.y1jx2/ � P.x2/

CP.z1jx2; y1/ �
P.y1jx2/ � P.x2/

P.y1jx1/ � P.x1/C P.y1jx2/ � P.x2/

D
3

4
�

3
4
� 1

2
3
4
� 1

2
C 1

2
� 1

2

C
3

4
�

1
2
� 1

2
3
4
� 1

2
C 1

2
� 1

2

D
3

4
D P.z1jx1; y1/ D P.z1jx2; y1/

(2.23)

P.z1jy2/ D P.z1jx1; y2/ � P.x1jy2/C P.z1jx2; y2/ � P.x2jy2/

D P.z1jx1; y2/ �
P.y2jx1/ � P.x1/

P.y2/
C P.z1jx2; y2/ �

P.y2jx2/ � P.x2/

P.y2/

D P.z1jx1; y2/ �
P.y2jx1/ � P.x1/

P.y2jx1/ � P.x1/C P.y2jx2/ � P.x2/

CP.z1jx2; y2/ �
P.y2jx2/ � P.x2/

P.y2jx1/ � P.x1/C P.y2jx2/ � P.x2/

D
1

2
�

1
4
� 1

2
1
4
� 1

2
C 1

2
� 1

2

C
1

2
�

1
2
� 1

2
1
4
� 1

2
C 1

2
� 1

2

D
1

2
D P.z1jx1; y2/ D P.z1jx2; y2/

(2.24)
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Table 2.4 The concept of a
variable’s Markovian parents
allows for an even more
compact specification of P

P.x1/D 1
2

P.y1jx1/D 3

4
P.z1jy1/D 3

4

P.y1jx2/D 1

2
P.z1jy2/D 1

2

With help of these equations it is easy to see that P.z1/ D P.z1jy1/ �P.y1/CP.z1jy2/ �

P.y2/ D 3
4
� 5

8
C 1

2
� 3

8
D 11

32
6D 3

4
D P.z1jy1/, and thus, also DEPP.Y; Z/ holds. So ;

cannot be the set of Markovian parents of Z. Therefore, fYg is in fact the narrowest
set of predecessors of Z in the given ordering X; Y; Z that screens Z off from all its
predecessors, and hence, fYg is the much sought-after set of Markovian parents of
Z. So we can store our exemplary probability distribution P via the five (instead of
the original eight) equations in Table 2.4 determining the probabilities of the diverse
variable values conditional on their Markovian parents.

Summarizing the considerations above, it turns out that the following equation
holds for any given ordering of variables X1; : : : ; Xn—this equation provides a
simplification of the chain rule formula Equation 2.15 for fixed orderings by means
of the notion of a variable’s Markovian parents6:

P.x1; : : : ; xn/ D

nY

iD1

P.xijx1; : : : ; xi�1/ D

nY

iD1

P.xijparM.Xi// (2.25)

Markov condition and Markov compatibility Let us come to the notion of a
Bayesian network now. Bayesian networks are closely connected to the notion of
Markovian parents. A Bayesian network combines a probability distribution P over
a set of variables V with a graph over V in such a way that a set of probabilistic
independencies that hold in P can be read off this graph’s structure. A Bayesian
network (BN) is an ordered pair hG; Pi, where G D hV; Ei is a DAG (whose vertex
set contains only statistical variables) and P is a probability distribution over this
graph’s vertex set V that satisfies the so-called Markov condition (MC). A DAG and
a probability distribution satisfying MC are also said to be Markov compatible (cf.
Pearl 2000, p. 16).

Definition 2.4 (Markov condition) A graph G D hV; Ei and a probability
distribution P over V satisfy the Markov condition if and only if it holds for all
X 2 V that INDEPP.X; VnDesG.X/jParG.X//.

So hG; Pi is a BN if and only if all variables X in G’s vertex set V are
probabilistically independent of all non-descendants of X conditional on X’s parents.
Since BNs satisfy the Markov condition, MC and the BN whose graph is depicted

6While ‘ParM.X/’ denotes the set of X’s Markovian parents, ‘parM.X/’ stands for the instantiation
of X’s Markovian parents ParM.X/ induced by x1; : : : ; xn in P.x1; : : : ; xn/ on the left hand side of
Equation 2.25.
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Fig. 2.6 Exemplary DAG

Table 2.5 Independencies
implied by MC and the graph
depicted in Fig. 2.6

INDEPP.X1; fX3gj;/

INDEPP.X2; fX3gjfX1g/

INDEPP.X3; fX1; X2; X4gj;/

INDEPP.X4; fX1; X3; X5gjfX2g/

INDEPP.X5; fX1; X4gjfX2; X3g/

in Fig. 2.6 imply, for instance, the probabilistic independence relations in Table 2.5
for the associated probability distribution P over V . (The independencies following
trivially from Definition 2.2, e.g., INDEP.X1; fX1gj;/ or INDEP.X2; fX1gjfX1g/, are
not mentioned in this list.)

If an ordering X1; : : : ; Xn of variables in V corresponds to the ordering of these
variables in a BN hV; E; Pi (this means that there is no arrow ‘�!’ in the BN’s graph
G D hV; Ei pointing from a variables Xj to a variable Xi, where Xi is a predecessor
of Xj in the given ordering), then the set of Markovian parents of every variable in
this ordering is a subset of this variable’s set of parents7:

ParM.X/ � ParhV;Ei.X/ (2.26)

P.x1; : : : ; xn/ D

nY

iD1

P.xijx1; : : : ; xi�1/ D

nY

iD1

P.xijparM.Xi//

D

nY

iD1

P.xijparhV;Ei.Xi// (2.27)

Minimality condition The minimality condition can be defined as follows:

Definition 2.5 (minimality condition) A graph G D hV; Ei and a probability
distribution P over V satisfy the minimality condition if and only if hV; E; Pi
satisfies MC and there is no submodel hV; E0; Pi of hV; E; Pi with E0 � E that
satisfies MC.

7Here is an example where the inclusion in Equation 2.26 is strict: Assume our BN has the graph
depicted in Fig. 2.6. Assume further that X5 depends on X2, but not on X3. In that case, X5’s only
Markov parent in the ordering X1; : : : X5 is X2, while X5’s graphical parents are X2 and X3.
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Table 2.6 If the graph depicted in Fig. 2.6 is interpreted as the graph of a minimal BN, then the
independence and dependence relations below are implied by this BN’s topological structure; if
interpreted as the graph of a non-minimal BN, on the other hand, only the independencies in the
left column are implied. The ‘M’ on the right hand side of the stroke ‘j’ functions as a proxy for
some subset of V D fX1; : : : X5g not containing the variables Xi and Xj on the left hand side of
the ‘j’

Independence relations Dependence relations

INDEPP.X1; fX3gj;/ DEPP.X1; fX2gjM/

INDEPP.X2; fX3gjfX2g/ DEPP.X2; fX4gjM/

INDEPP.X3; fX1; X2; X4gj;/ DEPP.X2; fX5gjM/

INDEPP.X4; fX1; X3; X5gjfX2g/ DEPP.X3; fX5gjM/

INDEPP.X5; fX1; X4gjfX2; X3g/

A BN that satisfies the minimality condition (cf. Spirtes et al. 2000, p. 12) is
called a minimal Bayesian network. In a minimal BN, every connection between two
variables by an arrow X �! Y is probabilistically productive. So the graph hV; Ei
of a minimal BN hV; E; Pi does not only imply some probabilistic independence
relations, but also some probabilistic dependence relations that have to hold in any
compatible probability distribution P. If the graph depicted in Fig. 2.6, for instance,
is the graph of a minimal BN hV; E; Pi, then the dependence/independence relations
in Table 2.6 have to hold in P. (Also all dependence and independence relations
implied by the relations in Table 2.6 have, of course, to hold in P.)

If a BN hV; E; Pi does satisyfy the minimality condition, then also the following
stronger version of Equation 2.26 holds:

ParM.X/ D ParhV;Ei.X/ (2.28)

d-separation and d-connection If we take a look at any arbitrarily chosen directed
acyclic graph G D hV; Ei, then, thanks to MC, we can read off the graph which
probabilistic independence relations have to hold in any probability distribution P
Markov-compatible with G. The graph depicted in Fig. 2.7, for instance, is com-
patible with any probability distribution P including the probabilistic independence
relations in Table 2.7. So we know a lot about a BN’s probability distribution only
by looking at the topology of this BN’s graph. But is there a way we can learn
even more from a BN’s graph? MC does often not tell us directly whether two
variables of a BN’s graph are probabilistically dependent/independent and how their
probabilistic dependence/independence would be affected when one conditionalizes
on certain variables or sets of variables of this graph. So, for instance, are X2 and
X4 correlated conditional on X3 in Fig. 2.7? We could try to use the independencies
in Table 2.7 together with the graphoid axioms introduced in Sect. 2.5 to answer
this question without tedious probabilistic computation. But maybe there is an even
simpler way to answer the question just by looking at the BN’s graph?

Fortunately, the answer to this question is an affirmative one: There is a strong
connection between the topological properties of a BN’s DAG and the diverse
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Fig. 2.7 Another exemplary
DAG

Table 2.7 Independencies
implied by MC and the graph
depicted in Fig. 2.7

INDEPP.X1; fX2gj;/

INDEPP.X2; fX1; X3; X4; X6gj;/

INDEPP.X3; fX2; X4gjfX1g/

INDEPP.X4; fX2; X3; X5; X6gjfX1g/

INDEPP.X5; fX1; X4; X6gjfX2; X3g/

INDEPP.X6; fX1; X2; X4; X5gjfX3g/

dependence/independence relations which may or may not hold in associated
probability distributions P. This connection is established via the notion of d-
separation/d-connection (cf. Pearl 2000, pp. 16f)8:

Definition 2.6 (d-separation/d-connection) X; Y 2 V are d-separated by M �

VnfX; Yg in directed graph G D hV; Ei (SEPd
hV;Ei.X; YjM/) if and only if every

path � between X and Y contains a subpath of one of the following forms (where
Z1; Z2; Z3 2 V):

(a) Z1 �! Z2 �! Z3 with Z2 2 M, or
(b) Z1  � Z2 �! Z3 with Z2 2 M, or
(c) Z1 �! Z2  � Z3 with Z2 62 M, where also no descendant of Z2 is in M.

X and Y are d-connected given M in G D hV; Ei (CONd
hV;Ei.X; YjM/) if and only if

they are not d-separated by M.

When there is a path � between X and Y that goes through M, then we say that
M blocks this path � if M d-separates X and Y , i.e., SEPd

hV;Ei.X; YjM/ holds. A path
� not blocked by M is said to be activated by M.

Here are some examples for illustrating how Definition 2.6 works: In the graph
in Fig. 2.7, X1 and X3 are d-connected (given the empty set) because there is a path
between X1 and X3, viz. X1 �! X3, not satisfying one of the conditions (a)–(c)
in Definition 2.6. X4 and X5 are also d-connected (given the empty set); they are
connected via path � : X5  � X3  � X1 �! X4 which contains no subpath of
the form Z1 �! Z2 �! Z3 with Z2 2 ; (thus, (a) is not satisfied), no subpath

8The term ‘d-connection’ is due to the fact that d-connection was initially defined for directed
graphs; hence, the ‘d’ for ‘directed’.
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of the form Z1  � Z2 �! Z3 with Z2 2 ; (thus, (b) is not satisfied), and no
subpath of the form Z1 �! Z2  � Z3 with Z2 62 ; and no descendant of Z2

in ; (thus, (c) is not satisfied). This path � is blocked when one conditionalizes
on X1, X3, or on fX1; X3g. X1 and X2 are d-separated (by the empty set) because
X1 and X2 are connected only by a collider path where neither the collider X5 nor
one of X5’s descendants (actually, there are none) is an element of the empty set.
Though SEPd

hV;Ei.X1; X2j;/, X1 and X2 become d-connected when conditionalizing
on X5. (Conditions (a)–(c) in Definition 2.6 are not satisfied in that case.) If one
conditionalizes not only on X5, but also on X3 (i.e., on the set fX3; X5g), probability
propagation over the path X2 �! X5  � X3  � X1 �! X4 is blocked again,
because condition (a) of Definition 2.6 is satisfied in that case.

d-separation/d-connection and probabilistic dependence/independence relations
of a BN’s probability distribution P are connected via the d-separation criterion (cf.
Pearl 2000, p. 18):

Criterion 2.1 (d-separation criterion) If graph G D hV; Ei and probability
distribution P over V satisfy MC, then INDEPP.X; YjM/ holds for all X; Y 2 V
and M � VnfX; Yg whenever SEPd

hV;Ei.X; YjM/ holds.

The d-separation criterion identifies all and only the independencies also implied
by MC (cf. Pearl 2000, p. 19). Criterion 2.1 finally allows one to read off
the independence relations which have to hold in any probability distribution P
compatible to a given directed graph G. X4 and X5 are, for instance, d-connected
in the graph depicted in Fig. 2.7, and thus, X4 and X5 may be correlated in the
BN’s associated probability distribution. (It may also be the case that X4 and X5

are independent.) When one conditionalizes on any set of variables lying on the
path � : X5  � X3  � X1 �! X4, e.g., on X1, then this path is blocked, and thus,
Criterion 2.1 implies INDEPP.X5; X4jX1/.
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