Contents

1 **Introduction** ... 1
1.1 Some History About Regulations for Pressure Vessels 6
1.2 Significance of Minimum Burst Ratio Versus Service Strength 11
1.3 Load Cycle Fatigue Sensitivity .. 12
1.4 Residual Strength ... 14
1.5 Slow Burst Test (SBT) .. 15
1.6 Probabilistic Approach (PA) ... 16
Literature ... 17

2 **Test Procedures for Hydraulic Sample Testing** 19
2.1 General Aspects Regarding Reproducibility of Test Procedures .. 21
2.1.1 Reproducibility of Cycle Tests 21
2.1.2 Reproducibility of Burst Tests 33
2.2 Influence of Time on Quasi-Static Test Procedures to Rupture 35
2.2.1 Burst Testing of Composite Cylinders 36
2.2.2 Sustained Load Testing of Composite Cylinders 38
2.3 The Slow Burst Test (SBT) ... 43
2.3.1 Development of the Slow Burst Test 43
2.3.2 Experience with the Slow Burst Test 47
2.4 Detailed Recommendations for a SBT-Procedure 60
2.4.1 Sampling of Test Specimens (Composite Cylinders) 60
2.4.2 Test Parameters .. 60
2.4.3 Test Procedures .. 61
2.4.4 SBT-Procedure with Stepwise Pressure Increase 62
Literature ... 65

xiii
3 Statistical Assessment of Sample Test Results

3.1 Introduction of the “BAM-Performance Chart” (SPC)
3.1.1 The SPC for Burst Pressure
3.1.2 The SPC for Time to Rupture
3.1.3 The SPC for Load Cycles to Leakage
3.2 Statistical Assessment of Sample Test Results
3.2.1 Test Result from Rapid and Slow Burst Testing
3.2.2 Test Results from Load Cycle Testing
3.3 Determination of the Survival Rate of a Sample (SR)
3.3.1 SR Resulting from Burst and Slow Burst Sample Testing
3.3.2 SR Resulting from Load Cycle Testing
3.4 Transfer of Sample Results on a Population of Composite Cylinders
3.4.1 Confidence Level and Confidence Interval
3.4.2 Sample Evaluation in the SPC for the Burst Strength (Linear Scale)
3.4.3 Sample Evaluation in the SPC for the Load Cycle Strength (Logarithmic Scale)
3.5 Aspects of Practical Use
3.5.1 Influence of Gas Properties
3.5.2 Aspects of the Accidental Loads

4 Strength Degradation and Lifetime Assessment

4.1 Aspects of Load Cycle Fatigue Sensitivity
4.1.1 Consideration for the Primary Failure of Composite Cylinders
4.1.2 The Load Cycle Sensitivity as Criterion for Classification of Design Types
4.1.3 Assessment of the Leak-Before-Break Behaviour
4.1.4 Strength Properties at “Beginning of Life”
4.2 Experience with Artificial Ageing
4.2.1 Residual Strength Testing Subsequent to Artificial Ageing (EoL)
4.2.2 Artificial Ageing Due to Hydraulic Load Cycles
4.2.3 Artificial Ageing Due to Sustained Load at Elevated Temperature
4.2.4 Artificial Ageing Due to Load Cycling with Gas
4.3 Experience with In-Service Degradation
4.3.1 Residual Strength in Terms of Hydraulic Load Cycles
4.3.2 Residual Strength in Terms of Burst Pressure
4.3.3 Residual Burst Strength of Steel Cylinders
4.4 Assessment of Degradation up to the End of Safe Service Life .. 204
 4.4.1 Degradation of the Survival Rate .. 204
 4.4.2 Extrapolation of Test Results Subsequent to Operational Ageing .. 210
 4.4.3 Interpolation of the Test Results from the Artificial Ageing .. 216
4.5 Assessment of the End of Safe Service Life on the Basis of Artificial Ageing in Combination with Operational Checks 222
 4.5.1 Assessment of Design Types at Beginning of Life .. 222
 4.5.2 Operational Studies Based on Tests Parallel to Service .. 224
4.6 Production Quality and Its Influence on the Service Life .. 227
 4.6.1 Interpretation of the Degradation .. 229
 4.6.2 Composite Cylinders Without a Load-Sharing Liner .. 231
 4.6.3 Composite Cylinders with a Metallic Liner .. 232
 4.6.4 Detection of Manufacturing Failures by Using NDT .. 235
Literature .. 239

5 The Probabilistic Approval Approach (PAA) .. 243
 5.1 The Acceptance of Risk: Consequence and Probability .. 245
 5.1.1 The Balance of Risk and Chance .. 246
 5.1.2 Analysis of Consequences .. 255
 5.1.3 Aspects of the Task-Related Balance of Chance and Risk .. 264
 5.2 Analysis of Minimum Requirements in Regulations by Monte Carlo Simulation .. 277
 5.2.1 Comparison of Current Regulations .. 278
 5.2.2 Acceptance Rates of Basic Populations Due to the Burst Requirement .. 282
 5.2.3 Optimisation of Semi-Probabilistic Approval Requirements .. 293
 5.3 Comparison of Probabilistic Approach Versus Deterministic Requirements .. 299
 5.3.1 Statistical Interpretation of Deterministic Requirements .. 300
 5.3.2 Principles for Statistical Evaluation of Minimum Requirements .. 309
 5.3.3 Assessment of Regulations According to the Resulting Reliability .. 312
 5.3.4 The Sample Size in the Determination of (Slow) Burst Strength .. 317
 5.3.5 The Sample Size in the Determination of Cycle Fatigue Strength .. 321
5.4 Potential for the Development of a Probabilistic Approval Approach PAA .. 329
5.4.1 Weak Points and Uncertainties of the PAA 330
5.4.2 Cost Saving Effects of the PAA 338
5.4.3 Essentials for Creating a PA-Based Regulation 340

Literature ... 347

Epilogue .. 353

Terms and Definitions. 355

Index .. 367
Safety Assessment of Composite Cylinders for Gas Storage by Statistical Methods
Potential for Design Optimisation Beyond Limits of Current Regulations and Standards
Mair, G.W.
2017, XXI, 369 p. 242 illus., 231 illus. in color., Hardcover
ISBN: 978-3-319-49708-2