Preface to the Fifth Edition

In our preface to the first edition (1992) of this book, we wrote that we had tried to provide a user-friendly introduction to the topic of convection in porous media. We assumed that the reader was conversant with the basic elements of fluid mechanics and heat transfer but otherwise the book was self-contained, with only routine classic mathematics employed. We hoped that the book would be useful both as a review (for reference) and as a tutorial work (suitable as a textbook in a graduate course or seminar). In subsequent editions we retained the basic structure and most of the text of the previous editions.

Papers on convection in porous media are now being published at the rate of one a day. In the latest edition there are about 2800 new references. In previous editions we did not attempt to provide an exhaustive list, but now we have tried to improve the archival value of our book by making the list more comprehensive, within the stated scope of our book. To this end we have now cited a number of earlier papers that, for one reason or another, were not cited in previous editions. Most of the new publications have been fitted into existing sections, but new subsections have been provided for those publications involving nanofluids. Our literature survey covers papers published prior to the end of 2016.

Once again we decided that, except for a brief mention, convection in unsaturated media had to be beyond the scope of this book, and our coverage is mainly confined to single phase flow. Also, we are aware that there are some topics in the area of hydrology and geophysics that could be regarded as coming under the umbrella of the title of our book but are not treated here. Papers solely concerned with numerical methodology are generally omitted.

We are grateful to a large number of people for their comments on the material in previous editions. Other colleagues have continued to improve our understanding of the subject of this book in ways too numerous to mention here.
We wish to thank our employers, the University of Auckland and Duke University, for their ongoing support.

Auckland, New Zealand Donald A. Nield
Durham, NC, USA Adrian Bejan
Preface to the Fourth Edition

Papers on convection in porous media continue to be published at a rate that is now over 250 per year. This indication of the continued importance of the subject, together with the wide acceptance of the first, second, and third editions of the book, has encouraged us to prepare an expanded fourth edition. We have retained the basic structure and most of the text of the third edition. We have not attempted to be exhaustive in our choice of references, but nevertheless there are approximately 1750 new citations to the literature! Again, we have made an effort to highlight new conceptual developments and engineering applications.

We found that it was possible to fit most of the new material under the existing section headings. However, we now have new sections on nanofluids, carbon dioxide sequestration, and the reaction scenarios that arise in a geological context. Once again we decided that, except for a brief mention, convection in unsaturated media was beyond the scope of this book. Also, we are aware that there are some topics in the area of hydrology that could be regarded as coming under the umbrella of the title of our book but are not treated here.

We are grateful to a large number of people for their comments on the material in previous editions. Other colleagues have continued to improve our understanding of the subject of this book in ways too numerous to mention here.

We wish to thank our employers, the University of Auckland and Duke University, for their ongoing support.

Once again we relied on the expertise and hard work of Deborah Fraze for the preparation of our manuscript.

Auckland, New Zealand
Durham, NC, USA

Donald A. Nield
Adrian Bejan
Preface to the Third Edition

Papers on convection in porous media continue to be published at the rate what is now over 200 per year. The indication of the continued importance of the subject, together with the wide acceptance of the first and second editions of this volume, has encouraged us to prepare an expanded third edition. We have retained the basic structure and most of the text of the second edition. We have been somewhat selective in our choice of references, but nevertheless there are over 1400 new references. Again, we have made an effort to highlight new conceptual developments and engineering applications.

We found that it was possible to fit a lot of the new material under the existing section headings. However, we now have new sections on bidisperse porous media, local thermal nonequilibrium, electrodiffusion, transverse heterogeneity in channels, thermal development of forced convection, effects of temperature-dependent viscosity, constructal multiscale flow structures, optimal spacings for plates separated by porous structures, control of convection using vertical vibration, and bioconvection.

Once again we decided that, except for a brief mention, convection in unsaturated media had to be beyond the scope of this book. Also, we are aware that there are some topics in the area of hydrology that could be regarded as coming under the umbrella of the title of our book but are not treated here.

We are grateful to a large number of people who provided us, prior to publication, with copies of their chapters of books that survey research on various topics. Other colleagues have continued to improve our understanding of the subject of this book in ways too numerous to mention here.

We wish to thank our employers, the University of Auckland and Duke University, for their ongoing support.

Once again we relied on the expertise and hard work of Linda Hayes and Deborah Fraze for the preparation of the electronic version of our manuscript.

Auckland, New Zealand
Durham, NC, USA

Donald A. Nield
Adrian Bejan
Preface to the Second Edition

Papers on convection in porous media continue to be published at the rate of over 100 per year. This indication of the continued importance of the subject, together with the wide acceptance of the first edition, has encouraged us to prepare an expanded second edition. We have retained the basic structure and most of the text of the first edition. With space considerations in mind, we have been selective in our choice of references, but nevertheless there are over 600 new references. We also made an effort to highlight new conceptual developments and engineering applications.

In the introductory material, we judged that Chaps. 2 and 3 needed little alteration (though there is a new Sect. 2.6 on other approaches to the topic), but our improved understanding of the basic modeling of flow through a porous medium has led to a number of changes in Chap. 1, both within the old sections and by the addition of a section on turbulence in porous media and a section on fractured media, deformable media, and complex porous structures.

In Chap. 4, on forced convection, we have added major new sections on compact heat exchangers, on heatlines for visualizing convection, and on constructal tree networks for the geometric minimization of the resistance to volume-to-point flows in heterogeneous porous media.

In Chap. 5 (external natural convection) there is a substantial amount of new material inserted in the existing sections. In Chaps. 6 and 7, on internal natural convection, we now have included descriptions of the effects of a magnetic field and rotation, and there are new sections on periodic heating and on sources in confined or partly confined regions; the latter is a reflection of the current interest in the problem of nuclear waste disposal. In Chap. 8, on mixed convection, there are no new sections, but in a new subsection we have given some prominence to the unified theory that has been developed for boundary layer situations. In Chap. 9, on double-diffusive convection (heat and mass transfer) there is a new section on convection produced by inclined gradients, a topic that has also been given wider coverage in the related section in Chap. 7.
In Chap. 10, which deals with convection with change of phase, we have a new subsection on the solidification of binary alloys, a research area that has blossomed in the last decade. We also have a new section on spaces filled with fluid and fibers coated with a phase-change material. In the first edition we had little to say about two-phase flow, despite its importance in geothermal and other contexts. We now have included a substantial discussion on this topic, which we have placed at the end of Chap. 11 (geophysical aspects). Once again we decided that, except for a brief mention, convection in unsaturated media had to be beyond the scope of this book.

D.A.N. again enjoyed the hospitality of the Department of Mechanical Engineering and Materials Science at Duke University while on Research and Study Leave from the University of Auckland, and both of those institutions again provided financial support.

We are grateful for comments from Graham Weir and Roger Young on a draft of Sect. 11.9, a topic on which we had much to learn. We also are grateful to a large number of people who provided us with preprints of their papers prior to publication. Other colleagues have improved our understanding of the subject of this book in ways too numerous to mention here.

Once again we relied on the expertise and hard work of Linda Hayes for the preparation of the electronic version of our manuscript, and again the staff at the Engineering Library of Duke University made our search of the literature an enjoyable experience.

Auckland, New Zealand
Donald A. Nield
Durham, NC, USA
Adrian Bejan
Preface to the First Edition

In this book we have tried to provide a user-friendly introduction to the topic of convection in porous media. We have assumed that the reader is conversant with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained. Only routine classic mathematics is employed. We hope that the book will be useful both as a review (for reference) and as a tutorial work (suitable as a textbook in a graduate course or seminar).

This book brings into perspective the voluminous research that has been performed during the last two decades. The field recently has exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment. Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal. Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches.

We believe that this book is timely because the subject is now mature in the sense that there is a corpus of material that is unlikely to require major revision in the future. As the reader will find, the relations for heat transfer coefficients and flow parameters for the case of saturated media are now known well enough for engineering design purposes. There is a sound basis of underlying theory that has been validated by experiment. At the same time there are outstanding problems in the cases of unsaturated media and multiphase flow in heterogeneous media, which are relevant to such topics as the drying of porous materials and enhanced oil recovery.

The sheer bulk of the available material has limited the scope of this book. It has forced us to omit a discussion of convection in unsaturated media and also of geothermal reservoir modeling; references to reviews of these topics are given. We also have excluded mention of several hundred additional papers, including some of our own. We have emphasized reports of experimental work, which are in relatively short supply (and in some areas are still lacking). We also have emphasized simple analysis where this illuminates the physics involved. The excluded material
includes some good early work, which has now been superseded, and some recent
numerical work involving complex geometry. Also excluded are papers involving
the additional effects of rotation or magnetic fields; we know of no reported
experimental work or significant applications of these extensions. We regret that
our survey could not be exhaustive, but we believe that this book gives a good
picture of the current state of research in this field.

The first three chapters provide the background for the rest of the book. Chapters
4 through 8 form the core material on thermal convection. Our original plan, which
was to separate foundational material from applications, proved to be impractical,
and these chapters are organized according to geometry and the form of heating.
Chapter 9 deals with combined heat and mass transfer and Chap. 10 with convec-
tion coupled with change of phase. Geophysical themes involve additional physical
processes and have given rise to additional theoretical investigations; these are
discussed in Chap. 11.

This book was written while D.A.N. was enjoying the hospitality of the Depart-
ment of Mechanical Engineering and Materials Science at Duke University, while
on Research and Study Leave from the University of Auckland. Financial support
for this leave was provided by the University of Auckland, Duke University, and the
United States–New Zealand Cooperative Science Program. We are particularly
grateful to Dean Earl H. Dowell and Prof. Robert M. Hochmuth, both of Duke
University, for their help in making this book project possible.

Linda Hayes did all the work of converting our rough handwritten notes into the
current high-quality version on computer disk. She did this most efficiently and
with tremendous understanding (i.e., patience!) for the many instances in which we
changed our minds and modified the manuscript.

At various stages in the preparation of the manuscript and the figures we were
assisted by Linda Hayes, Kathy Vickers, Jong S. Lim, Jose L. Lage, and Laurens
Howle. Eric Smith and his team at the Engineering Library of Duke University went
to great lengths to make our literature search easier. We are very grateful for all the
assistance we have received.

Auckland, New Zealand
Durham, NC, USA

Donald A. Nield
Adrian Bejan
Convection in Porous Media
Nield, D.A.; Bejan, A.
2017, XXIX, 988 p. 171 illus., Hardcover
ISBN: 978-3-319-49561-3