Contents

1 Vector and Tensor Analysis 1
 1.1 Conventions and Symbols 1
 1.1.1 Summation Convention 1
 1.1.2 Kronecker’s Delta and Permutation Symbol 2
 1.1.3 Matrix and Determinant 2
 1.2 Vector .. 6
 1.2.1 Definition of Vector 6
 1.2.2 Operations of Vectors 7
 1.2.3 Component Description of Vector 11
 1.3 Tensor 15
 1.3.1 Definition of Tensor 15
 1.3.2 Quotient Law 16
 1.3.3 Notations of Tensors 18
 1.3.4 Orthogonal Tensor 19
 1.3.5 Tensor Product and Component 21
 1.4 Operations of Tensors 22
 1.4.1 Trace 23
 1.4.2 Various Tensors 23
 1.5 Scalar Triple Products with Invariants 29
 1.6 Eigenvalues and Eigenvectors 31
 1.7 Calculations of Eigenvalues and Eigenvectors 38
 1.7.1 Eigenvalues 38
 1.7.2 Eigenvectors 39
 1.8 Eigenvalues and Eigenvectors of Skew-Symmetric Tensor ... 40
 1.9 Cayley-Hamilton Theorem 42
 1.10 Positive Definite Tensor 43
 1.11 Polar Decomposition 43
 1.12 Isotropic Tensor-Valued Tensor Function 45
 1.13 Representation of Tensor in Principal Space 49
 1.14 Two-Dimensional State 52
 1.15 Tensor Functions 55
1.16 Partial Differential Calculi .. 56
1.17 Differentiation and Integration in Tensor Field 59
References ... 63

2 Motion and Strain (Rate) ... 65
 2.1 Motion of Material Point .. 65
 2.2 Time-Derivatives .. 67
 2.3 Deformation Gradient and Deformation Tensors 68
 2.4 Strain Tensors ... 73
 2.5 Strain Rate and Spin Tensors 79
 2.6 Logarithmic and Nominal Strains 91
 2.7 Surface Element, Volume Element and Their Rates 93
 2.8 Material-Time Derivative of Volume Integration 95
References ... 97

3 Stress Tensors and Conservation Laws 99
 3.1 Stress Tensor .. 99
 3.2 Conservation Law of Mass ... 104
 3.3 Conservation Law of Linear Momentum 105
 3.4 Conservation Law of Angular Momentum...................... 105
 3.5 Equilibrium Equation .. 106
 3.6 Equilibrium Equation of Angular Moment 108
 3.7 Virtual Work Principle ... 109
 3.8 Various Simple Deformations 110
 3.8.1 Uniaxial Loading ... 110
 3.8.2 Simple Shear .. 112
 3.8.3 Combination of Tension and Distortion 122
References ... 125

4 Objectivity and Objective (Rate) Tensors 127
 4.1 Objectivity .. 127
 4.2 Influence of Rigid-Body Rotation on Various
 Mechanical Quantities ... 128
 4.3 Material-Time Derivative of Tensor 132
 4.4 Convected Time-Derivative of Tensor 134
 4.5 Corotational Rate Tensors .. 142
 4.6 Various Stress Rate Tensors 143
 4.7 Time Derivative of Scalar-Valued Tensor Function 146
 4.8 Work Conjugacy .. 150
References ... 151

5 Elastic Constitutive Equations .. 153
 5.1 Hyperelasticity ... 153
 5.2 Infinitesimal Elastic Deformation 158
 5.3 Cauchy Elasticity .. 161
6 Basic Formulations for Elastoplastic Constitutive Equations

6.1 Multiplicative Decomposition of Deformation Gradient Tensor

6.2 Requirement for Additive Decomposition of Strain Rate and Spin

6.3 Conventional Hypoelastic-Based Plastic Constitutive Equations

6.4 Constitutive Equation of Metals

6.5 Formulation of Loading Criterion

6.6 Physical Backgrounds of Associated Flow Rule

6.6.1 Positiveness of Second-Order Plastic Work Rate: Prager’s Interpretation

6.6.2 Principle of Maximum Plastic Work

6.6.3 Positiveness of Work Done During Stress Cycle: Drucker’s Postulate

6.6.4 Positiveness of Second-Order Plastic Relaxation Work Rate

6.6.5 Comparison of Interpretations for Associated Flow Rule

6.7 Anisotropy

6.7.1 Definition of Isotropy

6.7.2 Elastoplastic Constitutive Equation with Kinematic Hardening

6.7.3 Kinematic Hardening Rules

6.8 Plastic Spin

6.9 Infinitesimal Hyperelastic-Based Plasticity and Physical Interpretation of Nonlinear Kinematic Hardening Rule

6.10 Limitations of Conventional Elastoplasticity

7 Unconventional Elastoplasticity Model: Subloading Surface Model

7.1 Mechanical Requirements

7.1.1 Continuity Condition

7.1.2 Smoothness Condition

7.2 Subloading Surface (Hashiguchi) Model

7.3 Salient Features of Subloading Surface Model

7.4 Numerical Performance of Subloading Surface Model

7.5 On Bounding Surface and Bounding Surface Model

7.6 Incorporation of Kinematic Hardening

7.7 Incorporation of Tangential-Inelastic Strain Rate

References
8 Cyclic Plasticity Models: Critical Reviews and Assessments 235
8.1 Classification of Cyclic Plasticity Models 235
8.2 Cyclic Kinematic Hardening Models: Improper Use of Kinematic Hardening 237
8.2.1 Multi-surface Model 238
8.2.2 Infinite Surface Model 240
8.2.3 Two-Surface Model 241
8.2.4 Single Surface Model 244
8.2.5 Superposed Kinematic Hardening Model 244
8.2.6 Common Drawbacks in Cyclic Kinematic Hardening Models 249
8.3 Expansion of Loading Surface: Extended Subloading Surface Model 252
References 255

9 Extended Subloading Surface Model 257
9.1 Normal-Yield and Subloading Surfaces 257
9.2 Evolution Rule of Elastic-Core 259
9.3 Plastic Strain Rate 265
9.4 Stain Rate Versus Stress Rate Relations 266
9.5 Loading Criterion 267
9.6 Calculation of Normal-Yield Ratio 267
9.7 Improvement of Inverse and Reloading Responses 268
9.8 Plastic Spin 271
9.9 Incorporation of Tangential-Inelastic Strain Rate 271
References 274

10 Constitutive Equations of Metals 275
10.1 Isotropic and Kinematic Hardening 275
10.2 Cyclic Stagnation of Isotropic Hardening 277
10.3 Calculation of Normal-Yield Ratio 283
10.4 Material Parameters and Comparisons with Test Data 284
10.4.1 Material Parameters 284
10.4.2 Comparison with Test Data 286
10.5 Springback and Residual Stress Analyses 295
10.6 Orthotropic Anisotropy 301
10.7 Representation of Isotropic Mises Yield Condition 310
10.7.1 Plane Stress State 311
10.7.2 Plane Strain State 313
References 314

11 Constitutive Equations of Soils 317
11.1 Isotropic Consolidation Characteristics 317
11.2 Yield Conditions 324
11.3 Subloading Surface Model 330
11.4 Extension of Material Functions 340
11.4.1 Yield Surface with Tensile Strength 340
11.4.2 Extended Isotropic Hardening Function with
 Deviatoric Hardening 343
11.4.3 Rotational Hardening 344
11.5 Extended Subloading Surface Model 348
 11.5.1 Normal-Yield and Subloading Surfaces 348
 11.5.2 Partial Derivatives of Subloading Surface
 Function 352
 11.5.3 Calculation of Normal-Yield Ratio 356
11.6 Simulations of Test Results 361
11.7 Description of Cyclic Mobility 364
 11.7.1 Physical Interpretation for Mechanism of Cyclic
 Mobility and Its Description by Subloading
 Surface Model 367
 11.7.2 Material Functions 370
 11.7.3 Simulation of Cyclic Mobility 372
11.8 Numerical Analysis of Footing Settlement Problem 379
11.9 On Isotropic Hardening Stagnation 384
11.10 Hyperelastic Constitutive Equation of Soils 386
References ... 390

12 Multiplicative Elastoplasticity: Subloading Finite
 Strain Theory ... 395
 12.1 Classification of Elastoplastic Constitutive Equation 395
 12.2 Further Multiplicative Decomposition of Plastic
 Deformation Gradient 397
 12.3 Stress Measures 400
 12.4 Hyperelastic Constitutive Equations 402
 12.5 Normal-Yield and Subloading Surfaces 404
 12.6 Plastic Flow Rules 406
 12.7 Plastic Strain Rate 408
 12.8 Calculation Procedures 411
 12.9 Cyclic Stagnation of Isotropic Hardening of Metals 411
References ... 414

13 Viscoplastic Constitutive Equations 415
 13.1 Rate-Dependent Deformation of Solids 415
 13.2 History of Viscoplastic Constitutive Equations 416
 13.3 On the Creep Model 419
 13.4 Mechanical Response of Past Overstress Model 421
 13.5 Extension to General Rate of Deformation: Subloading
 Overstress Model 423
13.6 Subloading-Viscoplastic Model Based on Multiplicative Decomposition	427
References	429
14 Damage Model	431
14.1 Damage Phenomenon	432
14.2 Damage Variable	432
14.3 Hyperelastic Relation	433
14.4 Subloading-Damage Model	434
14.4.1 Normal-Yield and Subloading Surfaces	434
14.4.2 Stress Rate Versus Strain Rate Relations	437
14.5 Hardening Rules	438
14.5.1 Isotropic Hardening Rule	438
14.5.2 Nonlinear Kinematic Hardening Rule	438
14.6 Damage Tensor	440
14.6.1 Isotropic Damage Tensor	441
14.6.2 On Strain Energy Density Release Rate	444
14.6.3 Unilateral Damage: Microcrack Closure Effect	445
14.6.4 Anisotropic (Orthotropic) Damage Tensor	449
14.7 Subloading-Overstress Damage Model	454
14.8 Subloading-Gruson Model	455
References	460
15 Plasticity for Phase Transformation	463
15.1 Constitutive Equation	463
15.1.1 Elastic Strain Increment	464
15.1.2 Plastic Strain Increment Based on Subloading Surface Model	464
15.2 Thermal and Transformation Strain Increments	466
15.2.1 Heat-Transformation Strain Increment	466
15.2.2 Transformation-Plastic Strain Increment	466
15.3 Stress Rate Versus Strain Rate Relation	467
References	469
16 Corotational Rate Tensor	471
16.1 Hypoelasticity	471
16.1.1 Zaremba-Jaumann Rate	471
16.1.2 Green-Naghdi Rate	473
16.2 Kinematic Hardening Material	475
16.2.1 Zaremba-Jaumann Rate	477
16.2.2 Green-Naghdi Rate	477
16.3 Plastic Spin	479
References	486
17 Localization of Deformation	489
18 Constitutive Equation for Friction: Subloading-Friction Model........ 501
18.1 History of Constitutive Equation for Friction 501
18.2 Decomposition of Sliding Velocity and Contract Traction ... 503
18.3 Elastic Sliding Velocity 507
18.4 Elastoplastic Sliding Velocity 509
 18.4.1 Normal Sliding-Yield and Sliding-Subloading
 Surfaces 509
 18.4.2 Evolution Rule of Normal Sliding-Yield Ratio 511
 18.4.3 Evolution Rule of Sliding-Hardening Function 513
 18.4.4 Plastic Sliding Velocity 515
 18.4.5 Relations Between Contact Traction Rate and
 Sliding Velocity 517
 18.4.6 Isotropic Sliding-Yield Surface 518
18.5 Loading Criterion 521
18.6 Calculation of Normal Friction-Yield Ratio 523
18.7 Fundamental Mechanical Behavior of Subloading-Friction
 Model .. 523
 18.7.1 Relation of Tangential Contact Traction Rate
 and Sliding Velocity 524
 18.7.2 Numerical Experiments and Comparisons
 with Test Data 526
18.8 Extension to Rotational and Orthotropic Anisotropy 531
18.9 Stick-Slip Phenomenon 538
18.10 Generalised Subloading Friction Model:
 Subloading-Overstress Friction Model 541
 18.10.1 Formulation of Generalised Subloading Friction
 Model .. 542
 18.10.2 Interpretation of Generalised Subloading Friction
 Model .. 547
 18.10.3 Numerical Experiments 550
 18.10.4 Comparison with Test Data 552
18.11 Dependence of Friction Coefficient on Normal
 Contact Stress 556
References ... 564

19 Crystal Plasticity ... 567
19.1 Multiplicative Decomposition of Deformation Gradient
 Tensor ... 567
19.2 Strain Rate and Spin 568
20 Implicit Stress Integration: Return-Mapping and Consistent Tangent Modulus Tensor

20.1 Hyperelastic Constitutive Equation

20.2 Return Mapping

20.3 Closest Point Projection

20.4 Cutting Plane Projection

20.5 Consistent Tangent Modulus Tensor

20.6 Procedure for FEM Analysis

20.7 Viscoplastic Material: Overstress Model

20.8 Subloading-Friction Model

20.9 Objective Time-Integration Algorithm of Rate Formulation

20.10 Forward-Euler and Return-Mapping Methods for Stress Integration

References

21 On Formulations from Thermodynamic View-Point

21.2 Energy Equation in Reference Configuration

21.3 Second Law of Thermodynamics: Clausius-Duhem Inequality

21.4 Generalized Force and Displacement: Onsagar’s Principle

21.5 Thermodynamic Potential

21.6 Specific Heat and Latent Heat

21.7 Derivation of Various Flow Rules from Second Law of Thermodynamics
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.7.1 Formulation by Infinitesimal Strain Theory</td>
<td>673</td>
</tr>
<tr>
<td>21.7.2 Multiplicative Finite Strain Theory</td>
<td>677</td>
</tr>
<tr>
<td>21.8 Impertinence in Formulation of Plastic Flow Rule</td>
<td>682</td>
</tr>
<tr>
<td>by Second Law of Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>683</td>
</tr>
<tr>
<td>Eratum to: Foundations of Elastoplasticity: Subloading Surface Model</td>
<td></td>
</tr>
<tr>
<td>Appendix A: Projection of Area</td>
<td>685</td>
</tr>
<tr>
<td>Appendix B: Covariant and Contravariant Base Vectors and Components</td>
<td>687</td>
</tr>
<tr>
<td>Appendix C: Logarithmic Spin</td>
<td>691</td>
</tr>
<tr>
<td>Appendix D: Euler’s Theorem for Homogeneous Function</td>
<td>695</td>
</tr>
<tr>
<td>Appendix E: Outward-Normal Vector of Surface</td>
<td>697</td>
</tr>
<tr>
<td>Appendix F: Relationships of Material Constants in (\ln v - \ln p) and (e - \ln p) Linear Relations</td>
<td>699</td>
</tr>
<tr>
<td>Appendix G: Derivation of Eq. (11.22)</td>
<td>701</td>
</tr>
<tr>
<td>Appendix H: Convexity of Two-Dimensional Curve</td>
<td>703</td>
</tr>
<tr>
<td>Appendix I: Matrix Representation of Tensor Relations</td>
<td>705</td>
</tr>
<tr>
<td>Appendix J: Computer Programs of Hashiguchi (Subloading Surface) Models</td>
<td>711</td>
</tr>
<tr>
<td>All Referred Bibliography</td>
<td>763</td>
</tr>
<tr>
<td>Index</td>
<td>783</td>
</tr>
</tbody>
</table>
Foundations of Elastoplasticity: Subloading Surface Model
Hashiguchi, K.
2017, XXIII, 796 p. 195 illus., 160 illus. in color., Hardcover
ISBN: 978-3-319-48819-6