Contents

1 **Basic Ideas** 1
 1.1 Definitions, Relations, and Theories 3
 1.1.1 Elastic Solids 3
 1.1.2 Thermal Stresses 4
 1.1.3 Equations of Motion 6
 1.1.4 Thermomechanical Coupling 7
 1.1.5 Classical Coupled Thermoelasticity 7
 1.1.6 Lord–Shulman Model of Linear (1967) Thermoelasticity (L-S Model) or Extended Thermoelasticity (ETE) 9
 1.1.7 Green–Lindsay Model of Linear Thermoelasticity (G-L Model (1972)) 9
 1.1.8 Green–Naghdi Model of Thermoelasticity 10
 1.1.9 Basic Relations and Equations in Magnetoelasticity 11

2 **Vector-matrix Differential Equation and Numerical Inversion of Laplace Transform** 13
 2.1 Vector-matrix Differential Equation 13
 2.2 Solution of Vector-matrix Differential Equation 14
 2.3 Applications 17
 2.4 Numerical Inversion of Laplace Transform 21

3 **Coupled Thermoelasticity** 25
 3.1 Problem (i) 25
 3.2 Basic Equations and Formulation of the Problem 26
 3.3 Solution Procedure 28
 3.4 Boundary Conditions 30

4 **Generalized Thermoelasticity** 33
 4.1 Problem (i) 33
 4.2 Basic Equations and Formulation of the Problem 34
 4.3 Solution Procedure 35

xiii
Problems and Solutions in Thermoelasticity and Magneto-thermoelasticity
Das, B.
2017, XIV, 104 p. 45 illus., 3 illus. in color., Hardcover
ISBN: 978-3-319-48807-3