Chapter 2
State Merging Algorithms

2.1 Preliminaries

Before we start analyzing how the state merging algorithms work, some basic functions on automata as well as functions on the sets of words have to be defined. We assume that below given routines are available throughout the whole book. Please refer to Appendixes A, B, and C in order to familiarize with the Python programming language, its packages relevant to automata, grammars, and regexes, and some combinatorial optimization tools. Please notice also that we follow the docstring convention. A docstring is a string literal that occurs as the first statement in a function (module, class, or method definition). Such string literals act as documentation.

```python
from FAdo.fa import *

def alphabet(S):
    """Finds all letters in S
    Input: a set of strings: S
    Output: the alphabet of S""
    result = set()
    for s in S:
        for a in s:
            result.add(a)
    return result

def prefixes(S):
    """Finds all prefixes in S
    Input: a set of strings: S
    Output: the set of all prefixes of S""
    result = set()
    for s in S:
        for i in xrange(len(s) + 1):
            result.add(s[:i])
    return result

def suffixes(S):
    """Finds all suffixes in S
    Input: a set of strings: S
    Output: the set of all suffixes of S""
```

© Springer International Publishing AG 2017
W. Wieczorek, Grammatical Inference, Studies in Computational Intelligence 673, DOI 10.1007/978-3-319-46801-3_2
result = set()
for s in S:
 for i in xrange(len(s) + 1):
 result.add(s[i:]),
return result

def catenate(A, B):
 """Determine the concatenation of two sets of words
 Input: two sets (or lists) of strings: A, B
 Output: the set AB""
 return set(a+b for a in A for b in B)

def ql(S):
 """Returns the list of S in quasi-lexicographic order
 Input: collection of strings
 Output: a sorted list""
 return sorted(S, key = lambda x: (len(x), x))

def buildPTA(S):
 """Build a prefix tree acceptor from examples
 Input: the set of strings, S
 Output: a DFA representing PTA""
 A = DFA()
 q = dict()
 for u in prefixes(S):
 q[u] = A.addState(u)
 for w in iter(q):
 u, a = w[:-1], w[-1:]
 if a != ' ':
 A.addTransition(q[u], a, q[w])
 if w in S:
 A.addFinal(q[w])
 A.setInitial(q[''])
 return A

def merge(q1, q2, A):
 """Join two states, i.e., q2 is absorbed by q1
 Input: q1, q2 state indexes and an NFA A
 Output: the NFA A updated""
 n = len(A.States)
 for q in xrange(n):
 if q in A.delta:
 for a in A.delta[q]:
 if q2 in A.delta[q][a]: A.addTransition(q, a, q1)
 if q2 in A.delta:
 for a in A.delta[q2]:
 if q in A.delta[q2][a]: A.addTransition(q1, a, q)
 if q2 in A.Initial: A.addInitial(q1)
 if q2 in A.Final: A.addFinal(q1)
 A.deleteStates([q2])
 return A

def accepts(w, q, A):
 """Verify if in an NFA A, a state q recognizes given word
 Input: a string w, a state index (int) q, and an NFA A
 Output: yes or no as Boolean value""
 ilist = A.epsilonClosure(q)
 for c in w:
Fig. 2.1 A PTA accepting $aa, aba, \text{and} bba$

Fig. 2.2 An NFA after merging a and ab in PTA

```python
ulist = A.evalSymbol(ulist, c)
if not ulist:
    return False
return not A.Final.isdisjoint(ulist)
```

There are two fundamental functions that are present in every state merging algorithms given in this book: `buildPTA` for constructing a prefix tree acceptor and `merge` which performs the merging operation.

Definition 2.1 A **prefix tree acceptor** (PTA) is a tree-like DFA built from the learning examples S by taking all the prefixes in the examples as states and constructing the smallest DFA A which is a tree which holds $L(A) = S$. The initial state is a root and all remaining states q have exactly one ingoing edge, i.e., $|\{q' : q \in \delta(q', a)\}| = 1$.

An exemplary PTA is depicted in Fig. 2.1.

The merging operation takes two states from an NFA and joins them into a single state. As we can see from the definition of the `merge` function, the new state (which inherits a label after q_1) shares the properties, as well as ingoing and outgoing arcs of both states that have been merged. Consider for instance automaton from Fig. 2.1. If states a and ab are merged, resulting automaton is as in Fig. 2.2.

It should be noted that after this operation the PTA lost the determinism property and—what is more attractive—the new automaton represents an infinite language.

2.2 Evidence Driven State Merging

The idea behind this algorithm is fairly straightforward. Given a sample, we start from building a PTA based on examples, then iteratively select two states and do
merging unless compatibility is broken. A heuristic for choosing the pair of states to merge, can be realized in many ways. We propose the following procedure. A score is given to each state pair, and the state pair with the best score is chosen. In order to explain the score in the simplest way (and for further investigations in the present book), we ought to define the right and the left languages of a state q.

Definition 2.2 For the state $q \in Q$ of an NFA $A = (Q, \Sigma, \delta, s, F)$ we consider the two languages:

$$\overrightarrow{L}(q) = \{w \in \Sigma^*: \delta(q, w) \cap F \neq \emptyset\}, \quad \overleftarrow{L}(q) = \{w \in \Sigma^*: q \in \delta(s, w)\}.$$

Thus, the right language of a state q, $\overrightarrow{L}(q)$, is the set of all words spelled out on paths from q to a final state, whereas the left language of a state q, $\overleftarrow{L}(q)$, is the set of all words spelled out on paths from the initial state s to q.

Now we can define the score of two states $q, r \in Q$ for an NFA A and the set U of the suffixes of S_+:

$$\text{score}(q, r) = |U \cap \overrightarrow{L}(q) \cap \overleftarrow{L}(r)|.$$

Finally, we have got the following form of the EDSM algorithm:

```python
def makeCandidateStatesList(U, A):
    # Build the sorted list of pairs of states to merge
    n = len(A.States)
    score = dict()
    langs = []
    pairs = []
    for i in range(n):
        langs.append(set(u for u in U if accepts(u, i, A)))
    for i in range(n-1):
        for j in range(i+1, n):
            score[i, j] = len(langs[i] & langs[j])
            pairs.append((i, j))
    pairs.sort(key=lambda x: -score[x])
    return pairs

def synthesize(S_plus, S_minus):
    # Infers an NFA consistent with the sample
    A = buildPTA(S_plus).toNFA()
    U = suffixes(S_plus)
    joined = True
    while joined:
        pairs = makeCandidateStatesList(U, A)
        joined = False
        for (p, q) in pairs:
            B = A.dup()
            merge(p, q, B)
            if not any(B.evalWordP(w) for w in S_minus):
```

2.2 Evidence Driven State Merging

\[
A = B \\
\text{joined} = \text{True} \\
\text{break} \\
\text{return } A
\]

2.3 Gold’s Idea

The central structure of the present algorithm is a table, which during the run is expanded vertically. Its columns are indexed by all suffixes (called EXP) of a sample \(\Sigma^+ \supset S = (S_+, S_-) \) and its rows are indexed by a prefixed closed set starting from the set \(\{\lambda\} \cup \Sigma \) (as usual \(\Sigma \) denotes an alphabet). The rows of the table correspond to the states of the final deterministic automaton \(A \). The indexes (words) of the rows are divided into two sets: RED and BLUE. The RED indexes correspond to states that have been analyzed and which will not be revisited. The BLUE indexes are the candidate states: they have not been analyzed yet and it should be from this set that a state is drawn in order to consider merging it with a RED state. There are three types of entries in the table, which we will call observation table (OT).

\[
\text{OT}[u, e] = 1 \text{ if } ue \in L(A); \text{OT}[u, e] = 0 \text{ if } ue \notin L(A); \text{ and } \text{OT}[u, e] = * \text{ otherwise (not known).}
\]

The sign * is called a hole and corresponds to a missing observation.

Definition 2.3 Rows indexed by \(u \) and \(v \) are obviously different (OD) for OT if there exists such \(e \in EXP \) that \(\text{OT}[u, e], \text{OT}[v, e] \in \{0, 1\} \) and \(\text{OT}[u, e] \neq \text{OT}[v, e] \).

Definition 2.4 An observation table OT is complete (or has no holes) if for every \(u \in \text{RED} \cup \text{BLUE} \) and for every \(e \in \text{EXP} \), \(\text{OT}[u, e] \in \{0, 1\} \).

Definition 2.5 A table OT is closed if for every \(u \in \text{BLUE} \) there exists \(s \in \text{RED} \) such that for every \(e \in \text{EXP} \), \(\text{OT}[u, e] = \text{OT}[s, e] \).

The algorithm is divided into four phases. We will illustrate its run by an example. Let \(S = (\{\lambda, ab, abab\}, \{a, b, aa, ba, bb, aab, bab, bbb\}) \) be a sample for which we want to find a consistent DFA.

Building a table from the data

```python
def buildTable(S_plus, S_minus):
    """Builds an initial observation table""
    Input: a sample
    Output: OT as dictionary and sets: Red, Blue, EXP"
    OT = dict()
    EXP = suffixes(S_plus | S_minus)
    Red = {''}
    Blue = alphabet(S_plus | S_minus)
    for p in Red | Blue:
        for e in EXP:
            if p+e in S_plus:
                OT[p, e] = 1
            else:
                OT[p, e] = 0 if p+e in S_minus else '*'
    return (Red, Blue, EXP, OT)
```
This phase is easy. For a sample S we get the following table:

```
          ' ' a b aa ab ba bb aab bab bbb abab
------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------
' '      1 0 0 0 1 0 0 0 0 0 0 0 1
a        0 0 1 * 0 * * 1 * * *
b        0 0 0 * 0 * 0 * * * *
```

Throughout the rest of the example run, RED rows occupy the upper part, while BLUE rows occupy the lower part of the table.

Updating the table

This phase is performed through the while loop that we can see in the `synthesize` function given at the end. The aim of this phase is to bring about the table to be closed. To this end, every BLUE word (index) b that is obviously different from all RED words becomes RED and rows indexed by ba, for $a \in \Sigma$, are added to the BLUE part of the table. In the example, this operation has been repeated two times (for a and then for b):

```
          ' ' a b aa ab ba bb aab bab bbb abab
------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ -------
def fillHoles(Red, Blue, EXP, OT):
    """Tries to fill in holes in OT
    Input: rows (Red + Blue), columns (EXP), and table (OT)
    Output: true if success or false if fail"
    for b in ql(Blue):
        found = False
        for r in ql(Red):
            if not any(OT[r, e] == 0 and OT[b, e] == 1 \
                or OT[r, e] == 1 and OT[b, e] == 0 for e in EXP):
                found = True
                for e in EXP:
                    if OT[b, e] != '*' :
                        OT[r, e] = OT[b, e]
            if not found:
                return False
        for e in EXP:
            if OT[r, e] == ' *':
                OT[r, e] = 1
    for r in Red:
        for e in EXP:
            if OT[r, e] == ' *':
                OT[r, e] = 1
    for b in ql(Blue):
        found = False
        for r in ql(Red):
            if not any(OT[r, e] == 0 and OT[b, e] == 1 \
                or OT[r, e] == 1 and OT[b, e] == 0 for e in EXP):
                found = True
                for e in EXP:
                    if OT[b, e] != '*' :
                        OT[b, e] = OT[r, e]
            if not found:
                return False
    return True

This routine, first fills the rows corresponding to the Red states by using the information included in the Blue rows which do not cause any conflict. In our example, the table has not been changed. Then all the holes in the Red rows are filled by 1s:

```
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>aa</th>
<th>ab</th>
<th>ba</th>
<th>bb</th>
<th>aab</th>
<th>bab</th>
<th>bbb</th>
<th>abab</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>aa</td>
<td>0</td>
<td>*</td>
<td>0</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ab</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ba</td>
<td>0</td>
<td>*</td>
<td>0</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>bb</td>
<td>0</td>
<td>*</td>
<td>0</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
```

Finally, the routine again visits Blue rows, tries to find a compatible Red row and copies the corresponding entries. This results in the following table:
<table>
<thead>
<tr>
<th></th>
<th>' '</th>
<th>a</th>
<th>b</th>
<th>aa</th>
<th>ab</th>
<th>ba</th>
<th>bb</th>
<th>aab</th>
<th>bab</th>
<th>bbb</th>
<th>abab</th>
</tr>
</thead>
<tbody>
<tr>
<td>' '</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>aa</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ab</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ba</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>bb</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Building a DFA from a complete and closed table

```python
def buildAutomaton(Red, Blue, EXP, OT):
 """Builds a DFA from closed and complete observation table
 Input: rows (Red + Blue), columns (EXP), and table (OT)
 Output: a DFA"
 A = DFA()
 A.setSigma(alphabet(Red | Blue | EXP))
 q = dict()
 for r in Red:
 q[r] = A.addState(r)
 for w in Red | Blue:
 for e in EXP:
 if w+e in Red and OT[w, e] == 1:
 A.addFinal(q[w+e])
 for w in iter(q):
 for u in iter(q):
 for a in A.Sigma:
 if all(OT[u, e] == OT[w+a, e] for e in EXP):
 A.addTransition(q[w], a, q[u])
 A.setInitial(q[''])
 return A

def OD(u, v, EXP, OT):
 """Checks if rows u and v obviously different for OT
 Input: two rows (prefixes), columns, and table
 Output: boolean answer"
 return any(OT[u, e] in {0, 1} and OT[v, e] in {0, 1} for e in EXP)

def synthesize(S_plus, S_minus):
 """Infers a DFA consistent with the sample
 Input: the sets of examples and counter-examples
 Output: a DFA"
 (Red, Blue, EXP, OT) = buildTable(S_plus, S_minus)
 Sigma = alphabet(S_plus | S_minus)
 x = q1(b for b in Blue if all(OD(b, r, EXP, OT) for r in Red))
 while x:
 Red.add(x[0])
 Blue.discard(x[0])
 Blue.update(catenate((x[0]), Sigma))
 for u in Blue:
 if u+e in S_plus:
 OT[u, e] = 1
```

```python
def buildAutomaton(Red, Blue, EXP, OT):
 """Builds a DFA from closed and complete observation table
 Input: rows (Red + Blue), columns (EXP), and table (OT)
 Output: a DFA"
 A = DFA()
 A.setSigma(alphabet(Red | Blue | EXP))
 q = dict()
 for r in Red:
 q[r] = A.addState(r)
 for w in Red | Blue:
 for e in EXP:
 if w+e in Red and OT[w, e] == 1:
 A.addFinal(q[w+e])
 for w in iter(q):
 for u in iter(q):
 for a in A.Sigma:
 if all(OT[u, e] == OT[w+a, e] for e in EXP):
 A.addTransition(q[w], a, q[u])
 A.setInitial(q[''])
 return A

def OD(u, v, EXP, OT):
 """Checks if rows u and v obviously different for OT
 Input: two rows (prefixes), columns, and table
 Output: boolean answer"
 return any(OT[u, e] in {0, 1} and OT[v, e] in {0, 1} for e in EXP)

def synthesize(S_plus, S_minus):
 """Infers a DFA consistent with the sample
 Input: the sets of examples and counter-examples
 Output: a DFA"
 (Red, Blue, EXP, OT) = buildTable(S_plus, S_minus)
 Sigma = alphabet(S_plus | S_minus)
 x = q1(b for b in Blue if all(OD(b, r, EXP, OT) for r in Red))
 while x:
 Red.add(x[0])
 Blue.discard(x[0])
 Blue.update(catenate((x[0]), Sigma))
 for u in Blue:
 if u+e in S_plus:
 OT[u, e] = 1
```
else:
    OT[u, e] = 0 if u+e in S_minus else '***
    x = q\lambda(b for b in Blue if all(OD(b, r, EXP, OT) for r in Red))
    if not fillHoles(Red, Blue, EXP, OT):
        return buildPTA(S_plus)
else:
    A = buildAutomaton(Red, Blue, EXP, OT)
    if all(A.evalWordP(w) for w in S_plus) and not any(A.evalWordP(w) for w in S_minus):
        return A
else:
    return buildPTA(S_plus)

In the last phase, the table is transformed into a DFA. Red words constitute the set of states, whereas the transition function is defined using the entries. The algorithm returns a DFA depicted in Fig. 2.3:

```python
>>> A = synthesize({"", "ab", "abab"},
... {"a", "b", "aa", "ba", "bb", "aab", "bab", "bbb"})
>>> print A.dotFormat()
```

```
digraph finite_state_machine {
 node [shape = doublecircle]; ";
 node [shape = circle]; "a";
 node [shape = circle]; "b";
 "" -> "a" [label = "a"];
 "" -> "b" [label = "b"];
 "a" -> "" [label = "b"];
 "a" -> "" [label = "a"];
 "b" -> "b" [label = "a, b"];
}
```

### 2.4 Grammatical Inference with MDL Principle

The minimum description length (MDL) principle is a rule of thumb in which the best hypothesis for a given set of data is the one that leads to the best compression of the data. Generally, searching for small acceptor compatible with examples and counter-examples is a good idea in grammatical inference. MDL principle is the development of this line of reasoning in case of the absence of counter-examples.
2.4.1 The Motivation and Appropriate Measures

Suppose that we are given the sample $S = \{\lambda, ab, abab, ababab\}$. Let us try to answer the question what makes an automaton $G$ better than $H$ (see Fig. 2.4) in describing the language represented by $S$. The idea is to measure an automaton along with the size of encoding all words of the sample. In this way, not always is the smallest automaton recognized as the most promising. The process of parsing is also at stake here.

Let $A = (Q, \Sigma, \delta, s, F)$ be an NFA all of whose non-final states have outgoing edges. The number of bits required to encode the path followed to parse a word $w$ can be assessed by the below given function $ch$. We associate with each state $q \in Q$ the value $t_q = \sum_{a \in \Sigma} |\delta(q, a)|$ if $q \notin F$. If $q \in F$ then $t_q = 1 + \sum_{a \in \Sigma} |\delta(q, a)|$, since one more choice is available. We are now in a position to define $ch(q, w)$. For the empty word we have $ch(q, \lambda) = \log(t_q)$ if $q \in F$; otherwise $ch(q, \lambda) = \infty$. For $w = au$ ($a \in \Sigma$, $u \in \Sigma^*$) $ch$ depends on the recursive definition: $ch(q, w) = \log(t_q) + \min_{r \in \delta(q, a)} ch(r, u)$ and $ch(q, w) = \infty$ if $\delta(q, a) = \emptyset$.

We can now, given a sample $S$ and an NFA $A$, measure the score $sc$ of $A$:

$$sc(A, S) = |Q| + \|\delta\| (2\log |Q| + \log |\Sigma|) + \sum_{w \in S} ch(s, w),$$

where $\|\delta\|$ is the number of transitions of $A$.

Coming back to automata $G$, $H$ and a sample $S$, the exact computations of the scores can be found below. Notice that $t_s = 2$ and $t_q = 1$ for $G$, while $t_s = 3$ for $H$. Thus, we have $sc(G, S) = 2 + 2(2\log(2) + \log(2)) + 10\log(2) = 18.0$ and $sc(H, S) = 1 + 2(2\log(1) + \log(2)) + 16\log(3) = 28.36$. Therefore, we need more space to encode both the automaton and the data in case of $H$ and $S$ than in case of $G$ and $S$.

2.4.2 The Proposed Algorithm

The idea is as follows. We start from the PTA and iteratively merge a pair of states as long as this operation decreases the score. The order in which states are merged can be scheduled in many ways. We base on the quasi-lexicographic order of the labels of
states. After building the PTA, every state in an automaton has a label corresponding to the path from the initial state to that state.

```python
from math import log
from FAdo.fa import *

def sc(A, S):
 """Measures the score of an NFA A and words S
 Input: an automaton A and the set of words S
 Output: a float""

 @memoize
def ch(i, w):
 """Calculates the size of encoding of the path followed to parse word w from the ith state in A
 Input: state's index, word
 Output: a float""
 if w == ' ':
 return log(t[i], 2) if i in A.Final else float('inf')
 else:
 if i in A.delta and w[0] in A.delta[i]:
 return log(t[i], 2) + min(ch(j, w[1:]) for j in A.delta[i][w[0]])
 else:
 return float('inf')

 s = list(A.Initial)[0]
t = dict()
for i in xrange(len(A.States)):
 t[i] = 1 if i in A.Final else 0
 if i in A.delta:
 t[i] += sum(map(len, A.delta[i].itervalues()))
 return len(A.States) + sum(ch(s, w) for w in S) + A.countTransitions()*(2*log(len(A.States), 2) + log(len(A.Sigma), 2))

def synthesize(S):
 """Finds a consistent NFA by means of the MDL principle
 Input: set of positive words
 Output: an NFA""
 A = buildPTA(S).toNFA()
 Red = {' '}
 Blue = set(A.States)
 Blue.remove(' ')
 current_score = sc(A, S)
 while Blue:
 for r in ql(Red):
 M = A.dup()
 merge(M.States.index(r), M.States.index(b), M)
 new_score = sc(M, S)
 if new_score < current_score:
 A = M
 current_score = new_score
 break
 if b in A.States:
 Red.add(b)
 return A
```
2.5 Bibliographical Background

The evidence driven state merging algorithm given in Sect. 2.2 is based in part on concepts published in Coste and Fredouille (2003). Gold’s algorithm (Gold 1978) was the first GI algorithm with convergence properties. We have presented the algorithm according to its description in de la Higuera (2010). The MDL principle in the context of deterministic automata was described in de la Higuera (2010). We have adapted it to a non-deterministic output in Sect. 2.4. More thorough theoretical investigations in this regard were carried by Adriaans and Jacobs (2006) for DFAs, and by Petasis et al. (2004) for CFGs.

It is also worth to note three state of the art tools for heuristic state-merging DFA induction: the Trakhtenbrot-Barzdin state merging algorithm (denoted Traxbar) adapted by Lang (1992), Rodney Price’s Abbadingo winning idea of evidence-driven state merging (Blue-fringe) described by Lang et al. (1998), and Rlb state merging algorithm (Lang 1997).

Trakhtenbrot and Barzdin (1973) described an algorithm for constructing the smallest DFA consistent with a complete labeled training set. The input to the algorithm is the PTA. This tree is squeezed into a smaller graph by merging all pairs of states that represent compatible mappings from word suffixes to labels. This algorithm for completely labeled trees was generalized by Lang (1992) to produce a (not necessarily minimum) machine consistent with a sparsely labeled tree.\(^1\)

The second algorithm that starts with the PTA and folds it up into a compact hypothesis by merging pairs of states is Blue-fringe. This program grows a connected set of red nodes that are known to be unique states, surrounded by a fringe of blue nodes that will either be merged with red nodes or be promoted to red status. Merges only occur between red nodes and blue nodes. Blue nodes are known to be the roots of trees, which greatly simplifies the code for correct merging. The only drawback of this approach is that the pool of possible merges is small, so occasionally the program has to do a low scoring merge.

The idea that lies behind the third algorithm, Rlb, is as follows. It dispenses with the red-blue restriction and is able to do merges in any order. However, to have a practical run time, only merges between nodes that lie within a distance ‘window’ of the root on a breadth-first traversal of the hypothesis graph are considered. This introduction of a new parameter is a drawback to this program, as is the fact that its run time scales very badly with training string length. However, on suitable problems, it works better than the Blue-fringe algorithm. In Lang (1997) one can find the detailed description of heuristics for evaluating and performing merges.

---

\(^1\)The reader can use implementations from the archive http://abbadingo.cs.nuim.ie/dfa-algorithms.tar.gz for the Traxbar and for the two remaining state-merging algorithms.
References


Grammatical Inference
Algorithms, Routines and Applications
Wieczorek, W.
2017, XI, 145 p. 18 illus., Hardcover
ISBN: 978-3-319-46800-6