Petri Nets and Semilinear Sets
(Extended Abstract)

Hsu-Chun Yen

Department of Electrical Engineering, National Taiwan University,
Taipei 106, Taiwan, Republic of China
yen@cc.ee.ntu.edu.tw

Abstract. Semilinear sets play a key role in many areas of computer
science, in particular, in theoretical computer science, as they are char-
acterizable by Presburger Arithmetic (a decidable theory). The reacha-
bility set of a Petri net is not semilinear in general. There are, however,
a wide variety of subclasses of Petri nets enjoying semilinear reachability
sets, and such results as well as analytical techniques developed around
them contribute to important milestones historically in the analysis of
Petri nets. In this talk, we first give a brief survey on results related to
Petri nets with semilinear reachability sets. We then focus on a technique
capable of unifying many existing semilinear Petri nets in a coherent way.
The unified strategy also leads to various new semilinearity results for
Petri nets. Finally, we shall also briefly touch upon the notion of almost
semilinear sets which witnesses some recent advances towards the general
Petri net reachability problem.

Petri nets (or, equivalently, vector addition systems) represent one of the most
popular formalisms for specifying, modeling, and analyzing concurrent systems.
In spite of their popularity, many interesting problems concerning Petri nets
are either undecidable or of very high complexity. For instance, the reachability
problem is known to be decidable [13] (see also [6]) and exponential-space-hard
[12]. (The reader is referred to [11] for an improved upper bound.) Historically,
before the work of [13], a number of attempts were made to investigate the
problem for restricted classes of Petri nets, in hope of gaining more insights and
developing new tools in order to conquer the general Petri net reachability prob-
lem. A common feature of those attempts is that decidability of reachability for
those restricted classes of Petri nets was built upon their reachability sets being
semilinear. As semilinear sets precisely correspond to the those characterized
by Presburger Arithmetic (a decidable theory), decidability of the reachability
problem follows immediately.

Formally speaking, a Petri net (PN, for short) is a 3-tuple \((P, T, \varphi)\), where
\(P\) is a finite set of places, \(T\) is a finite set of transitions, and \(\varphi\) is a flow function
\(\varphi : (P \times T) \cup (T \times P) \to N\). A marking is a mapping \(\mu : P \to N\), specifying
a PN’s configuration. (\(\mu\) assigns tokens to each place of the PN.) A transition
\(t \in T\) is enabled at a marking \(\mu\) iff \(\forall p \in P, \varphi(p, t) \leq \mu(p)\). If a transition \(t\)
is enabled, it may fire by removing \(\varphi(p, t)\) tokens from each input place \(p\) and
putting \(\varphi(t, p') \) tokens in each output place \(p' \). We then write \(\mu \xrightarrow{t} \mu' \), where \(\mu'(p) = \mu(p) - \varphi(p, t) + \varphi(t, p), \forall p \in P \). A sequence of transitions \(\sigma = t_1 \ldots t_n \) is a firing sequence from \(\mu_0 \) iff \(\mu_0 \xrightarrow{t_1} \mu_1 \xrightarrow{t_2} \ldots \xrightarrow{t_n} \mu_n \) for some markings \(\mu_1, \ldots, \mu_n \). (We also write \(\mu_0 \xrightarrow{\sigma} \mu_n \) or \(\mu_0 \xrightarrow{\sigma} \) if \(\mu_n \) is irrelevant.) Given a PN \(\mathcal{P} = (P, T, \varphi) \), its reachability set w.r.t. the initial marking \(\mu_0 \) is \(R(\mathcal{P}, \mu_0) = \{ \mu \mid \mu_0 \xrightarrow{\sigma} \mu, \text{ for some } \sigma \in T^* \} \). The reachability relation of \(\mathcal{P} \) is \(R(\mathcal{P}) = \{ (\mu_0, \mu) \mid \mu_0 \xrightarrow{\sigma} \mu, \text{ for some } \sigma \in T^* \} \).

A subset \(L \) of \(\mathbb{N}^k \) is a linear set if there exist vectors \(v_0, v_1, \ldots, v_t \) in \(\mathbb{N}^k \) such that \(L = \{ v \mid v = v_0 + m_1v_1 + \cdots + m_tv_t, m_i \in \mathbb{N} \} \). The vectors \(v_0 \) (referred to as the constant vector) and \(v_1, v_2, \ldots, v_t \) (referred to as the periods) are called the generators of the linear set \(L \). A set \(SL \subseteq \mathbb{N}^k \) is semilinear if it is a finite union of linear sets, i.e., \(SL = \bigcup_{1 \leq i \leq d} L_i \), where \(L_i (\subseteq \mathbb{N}^k) \) is a linear set. It is worthy of noting that semilinear sets are exactly those that can be expressed by Presburger Arithmetic (i.e., first order theory over natural numbers with addition), which is a decidable theory.

A PN is said to be semilinear if has a semilinear reachability set. In addition to the trivial example of finite PNs, the following are notable classes of semilinear PNs, including PNs of dimension 5 [4], conflict-free [7], persistent [7], normal [15], sinkless [15], weakly persistent [14], cyclic [1], communication-free PNs [2, 5], and several others (see [16] for more). It is also known that checking whether a PN has a semilinear reachability set is decidable [3]. In view of the above, a natural question to ask is to identity, if at all possible, the key behind the exhibition of semilinear reachability sets for such a wide variety of restricted PN classes, while their restrictions are imposed on the PN model either structurally or behaviorally. We are able to answer the question affirmatively to a certain extent. In what follows, we give a sketch for the idea behind our unified strategy. The idea was originally reported in [17]. As we shall explain later, for each of considered PNs, any reachable marking is witnessed by somewhat of a canonical computation which will be elaborated later. Furthermore, such canonical computations can be divided into a finite number of groups, each of which has a finite number of “minimal computations” associated with a finite number of “positive loops.” As one might expect, such minimal computations and positive loops exactly correspond to the constant vectors and periods, respectively, of a semilinear set. It is worth pointing out that the implication of our approach is two-fold. First, we are able to explain in a unified way a variety of semilinearity results reported in the literature. Second, perhaps more importantly, our approach yields new results in the following aspects:

(i) new semilinearity results for additional subclasses of PNs,
(ii) unified complexity and decidability results for problems including reachability, model checking, etc.

Given an \(\alpha = r_1 \cdots r_{d-1} \in T^* \) and an initial marking \(\mu_0 \), a computation of the form

\[
\pi : \mu_0 \xrightarrow{\sigma_0} \mu_1 \xrightarrow{r_1} \mu_1 \xrightarrow{\sigma_1} \mu_2 \xrightarrow{r_2} \cdots \xrightarrow{r_{d-1}} \mu_{d-1} \xrightarrow{\sigma_{d-1}} \mu_d,
\]
where \(\mu_i, \bar{\mu}_j \in N^k \), and \(\sigma_r \in T^* \) (0 \(\leq i \leq d, 1 \leq j \leq d - 1, 0 \leq r \leq d \)), is called an \(\alpha \)-computation. We write \(cv(\pi) = (\mu_1, \ldots, \mu_d) \). Suppose \(\delta_i \in T^* \), 1 \(\leq i \leq d \), are transition sequences such that \(\Delta(\delta_i) \geq 0 \) and \((\mu_i + \sum_{j=1}^{i-1} \Delta(\delta_j))^{\delta_i} \), then following the monotonicity property of PNs,

\[
\pi' : \mu_0 \xrightarrow{\sigma_0^{\delta_1}} \mu_1 \xrightarrow{\bar{\mu}_1} \mu_1 \xrightarrow{\sigma_1^{\delta_2}} \mu_2 \xrightarrow{\bar{\mu}_2} \cdots \xrightarrow{\sigma_d^{-1 \delta_d}} \mu'_d
\]

remains a valid PN computation. In fact, we have \(\mu_0 \xrightarrow{\sigma_0^{\delta_1}\tau_1\sigma_1^{\delta_2}\tau_2\cdots\tau_{d-1}\sigma_d^{-1\delta_d}+} \) \(\pi' \), meaning that \(\delta_1, \ldots, \delta_d \) constitute “pumpable loops”. In view of the above and if we write \(\text{cv}(\pi) \xrightarrow{\delta_1, \ldots, \delta_d} \text{cv}(\pi') \), clearly “\(\Rightarrow \)” is transitive as \(v \xrightarrow{\alpha_1, \ldots, \alpha_d} v' \) and \(v' \xrightarrow{\alpha_1, \ldots, \alpha_d} v'' \) imply \(v \xrightarrow{\alpha_1, \ldots, \alpha_d} v'' \), where \(v, v', v'' \in (N^k)^d, k = |P| \).

It turns out that the following properties are satisfied by several interesting subclasses of PNs all of which have semilinear reachability sets. With respect to an \(\alpha \in T^d \),

1. there is a finite set of transition sequences \(F \subseteq T^* \) with nonnegative displacements (i.e., \(\forall \gamma \in F, \Delta(\gamma) \geq 0 \)) such that if \((\mu_1, \ldots, \mu_d) \xrightarrow{\delta_1, \ldots, \delta_d} (\mu'_1, \ldots, \mu'_d) \) in some \(\alpha \)-computations, then \(\delta_i = \gamma_i^1 \cdots \gamma_i^{h_i} \), for some \(h_i \) where \(\gamma_i^j \in F \) (i.e., \(\delta_i \) can be decomposed into \(\gamma_i^1 \cdots \gamma_i^{h_i} \)), and
2. the number of “minimal” \(\alpha \)-computations is finite.

Intuitively, (2) ensures the availability of a finite set of constant vectors of a semilinear set, while (1) allows us to construct a finite set of periods based on those \(\Delta(\gamma), \gamma \in F \).

A PN \(\mathcal{P} = (\mathcal{P}, \mathcal{T}, \varphi) \) with initial marking \(\mu_0 \) is said to be computationally decomposable (or simply decomposable) if every reachable marking \(\mu \in R(\mathcal{P}, \mu_0) \) is witnessed by an \(\alpha \)-computation (\(\alpha \in T^* \)) which meets Conditions (1) and (2) above. \(\mathcal{P} \) is called globally decomposable if \(\mathcal{P} \) is decomposable for every initial marking \(\mu_0 \in N^k \). Let \(RR_{\alpha}(\mathcal{P}, \mu_0) = \{ cv(\pi) \mid \pi \text{ is an } \alpha \text{-computation from } \mu_0 \text{ for some } \alpha \in T^* \} \), and \(RR_{\alpha}(\mathcal{P}) = \{ (\mu_0, cv(\pi)) \mid \pi \text{ is an } \alpha \text{-computation from } \mu_0 \text{ for some } \alpha \in T^* \} \). We are able to show that if a PN is decomposable (resp., globally decomposable) then \(RR_{\alpha}(\mathcal{P}, \mu_0) \) (resp., \(RR_{\alpha}(\mathcal{P}) \)) is semilinear.

Among various subclasses of PNs, conflict-free, persistent, normal, sinkless, weakly persistent, cyclic, and communication-free PNs can be shown to be decomposable. Furthermore, each of the above classes of PNs also enjoys a nice property that

1. there exists a finite set \(\{\alpha_1, \ldots, \alpha_r\} \subseteq T^* \) (for some \(r \)) such that every reachable marking of the PN is witnessed by an \(\alpha_i \)-computation, for some \(1 \leq i \leq r \).

As a result, our unified strategy shows \(R(\mathcal{P}, \mu_0) \) of a PN \(\mathcal{P} \) with initial marking \(\mu_0 \) for each of the above subclasses to be semilinear. Furthermore, a stronger result shows that conflict-free and normal PNs are globally decomposable; hence, their reachability relations \(R(\mathcal{P}) \) are always semilinear.
For semilinear PNs, a deeper question to ask is: What is the size of its semilinear representation? An answer to the above question is key to the complexity analysis of various problems concerning such semilinear PNs. To this end, we are able to incorporate another ingredient into our unified strategy, yielding size bounds for the semilinear representations of the reachability sets. Consider a computation $\mu \xrightarrow{\sigma} \mu'$. Suppose $T = \{t_1, ..., t_h\}$. For a transition sequence $\sigma \in T^*$, let $PK(\sigma) = (\#_\sigma(t_1), ..., \#_\sigma(t_h))$ be an h-dimensional vector of nonnegative integers, representing the so-called Parikh map of σ. The i-th coordinate denotes the number of occurrences of t_i in σ. In addition to Conditions (1)-(3) above, if the following is also known for a PN:

(4) a function $f(\mu)$ which bounds the size of each of the minimal elements of $ER(\mu) = \{(PK(\sigma), \mu') \mid \mu \xrightarrow{\sigma} \mu'\}$ (i.e., the so-called extended reachability set),

then we are able to come up with a bound for the size of the semilinear representation of a PN’s reachability set.

Semilinearity for PNs is also related to the concept of the so-called flatness. A PN is said to be flat if there exist some words $\sigma_1, ..., \sigma_r \in T^*$ such that every reachable marking μ is witnessed by a computation $\mu_0 \xrightarrow{\sigma} \mu$ with $\sigma \in \sigma_1 \cdots \sigma_r$, i.e., it has a witnessing sequence of transitions belonging to a bounded language. It is not hard to see the reachability set of a flat PN to be semilinear, and as shown in [10], a variety of known PN classes are indeed flat. In a recent article [9], flatness is shown to be not only sufficient but also necessary for a PN to be semilinear. We shall compare flat PNs with the aforementioned decomposable PNs.

Finally, we also briefly touch upon recent advances for the general PN reachability problem in which the notion of (almost) semilinearity is essential in yielding a simpler decidability proof [8] in comparison with that of [6, 13].

References

Theoretical Aspects of Computing – ICTAC 2016
13th International Colloquium, Taipei, Taiwan, ROC,
October 24–31, 2016, Proceedings
Sampaio, A.; Wang, F. (Eds.)
2016, XVII, 479 p. 108 illus., Softcover
ISBN: 978-3-319-46749-8