Contents

1 Is Urban Future Predictable? .. 1
 1.1 Emergence ... 4
 1.2 Generic Dynamic Features of Systems of Cities 6
 1.2.1 The Hierarchical Differentiation of City Sizes 6
 1.2.2 The Meta-Stability of Urban Hierarchies 7
 1.2.3 A Regular Quasi-stochastic Process of Growth 8
 1.2.4 Hierarchical Diffusion of Innovation Waves and
 Functional Specializations 9
 1.3 Variety in the Evolution of Urban Systems 10
 1.3.1 A Simplified Typology of Systems of Cities 12
 1.3.2 Systematic Variations in the Rhythm
 of Urban Growth 13
 1.4 Urban Future: Models and Scenarios 14
 1.4.1 Challenges in Building Scenarios About Urban
 Evolution ... 14
 1.4.2 Challenges in Model Validation 16
References .. 17

2 The SimpopLocal Model 21
 2.1 Introduction .. 21
 2.2 Purpose of SimpopLocal 21
 2.3 Entities, State Variables and Scales 22
 2.4 Processes Overview and Scheduling 23
 2.4.1 Population Growth Mechanism 23
 2.4.2 Apply Innovation Mechanism 24
 2.4.3 Create and Diffuse Innovation Mechanisms 25
 2.5 Initial Conditions 28
 2.6 Input ... 29
 2.7 Running the Model for Parameter Estimates: Calibration 31
3 Evaluation of the SimpopLocal Model

3.1 Quantitative Evaluation
3.1.1 Stopping Criterion
3.1.2 Expectations
3.1.3 Handling the Stochasticity

3.2 Automated Calibration
3.2.1 Optimization Heuristic
3.2.2 Adaptation of NSGA2 to a Stochastic Model
3.2.3 Experimental Setup
3.2.4 Results

3.3 Calibration Profiles
3.3.1 Algorithm
3.3.2 Guide of Interpretation
3.3.3 Result Analysis

3.4 Conclusion

References

4 An Incremental Multi-Modelling Method to Simulate Systems of Cities’ Evolution

4.1 Introduction

4.2 Methodological and Technical Framework
for Multi-modelling Systems of Cities
4.2.1 Complementary and Competing Theories
4.2.2 A Methodology for Implementing Multi-models
4.2.3 Exploiting the Results of a Family of Models

4.3 A Family of Models of (Post-) Soviet Cities: MARIUS
4.3.1 Ordering Possible Causes of Evolution from the Most Generic to the Most Specific
4.3.2 Implementing Modular Mechanisms

4.4 Geographical Insights on (Post-) Soviet City Growth from Multi-modelling
4.4.1 Mechanisms’ Performance
4.4.2 Parameter Values
4.4.3 Residual Trajectories

4.5 VARIUS: A Visual Aid to Model Composition and Interpretation
4.5.1 Building the Model Online
4.5.2 Running the Model Online
4.5.3 Analyzing Results Online or ‘How Close Are We?’

4.6 Conclusion

References
5 Using Models to Explore Possible Futures
(Contingency and Complexity) .. 81
5.1 Models as Artefacts of Historically Contingent Complex Systems .. 82
5.2 A Method to Foster Diversity in a Model Outcomes 84
 5.2.1 The Pattern Space Exploration Algorithm: Principles and Implementation 84
 5.2.2 Evolutionary Methods for Parameter Space Exploration .. 85
 5.2.3 Novelty Search .. 86
 5.2.4 PSE Algorithm ... 86
5.3 Application to Systems of Cities 88
 5.3.1 Order Parameters from Empirical Observation of Urban Systems Evolution Over Time 89
 5.3.2 Parameter Space and Pattern Space 90
 5.3.3 Results 91
5.4 Conclusion: Acknowledging Historical Contingency for the Prediction of Potential Urban Futures 93
References .. 94

6 An Innovative and Open Toolbox 97
 6.1 Introduction ... 97
 6.2 The Ant Model ... 98
 6.3 Embed the Model in OpenMOLE 99
 6.4 Do Repetitions .. 102
 6.5 Automatic Workload Distribution 103
 6.6 Expose the Variability of the Model 103
 6.7 Aggregate the Results 104
 6.8 Explore the Space of Parameters 106
 6.9 Optimization with Genetic Algorithms 110
 6.10 Sensitivity Analysis with the Profiles Method 112
 6.11 Validation, Testing Output Diversity 115
References .. 117

Erratum to: Urban Dynamics and Simulation Models E1

Knowledge Accelerator’ in Geography and Social Sciences:
Further and Faster, but Also Deeper 119
Urban Dynamics and Simulation Models
Pumain, D.; Reuillon, R.
2017, XXII, 123 p. 40 illus., 27 illus. in color., Hardcover
ISBN: 978-3-319-46495-4