Contents

Part I Invited Lectures

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies of Shock Wave Reflections and Interactions (Paul Vieille Lecture)</td>
<td>3</td>
</tr>
<tr>
<td>B.W. Skews</td>
<td></td>
</tr>
<tr>
<td>Dispelling Misconceptions about Blast Waves (Irvine Israel Glass Lecture)</td>
<td>11</td>
</tr>
<tr>
<td>Charles Needham</td>
<td></td>
</tr>
<tr>
<td>A Review of the Richtmyer-Meshkov Instability from an Experimental Perspective</td>
<td>23</td>
</tr>
<tr>
<td>R. Bonazza</td>
<td></td>
</tr>
<tr>
<td>Medical and Biomedical Applications of Shock Waves: The State of the Art and the Near Future</td>
<td>29</td>
</tr>
<tr>
<td>Achim M. Loske</td>
<td></td>
</tr>
<tr>
<td>K.P.J. Reddy</td>
<td></td>
</tr>
<tr>
<td>Time-Developing 3D-CT Measurement of Shock Waves and Supersonic Density Flow Field</td>
<td>39</td>
</tr>
<tr>
<td>K. Maeno</td>
<td></td>
</tr>
<tr>
<td>Chemical Kinetics and Reacting Flows</td>
<td>47</td>
</tr>
<tr>
<td>R.K. Hanson and D.F. Davidson</td>
<td></td>
</tr>
<tr>
<td>Shock-Induced Combustion and Its Applications to Power and Thrust Generation</td>
<td>53</td>
</tr>
<tr>
<td>M. Brouillette, M. Picard, D. Rancourt, and J.-S. Plante</td>
<td></td>
</tr>
<tr>
<td>The Shock Fitting Technique from Gino Moretti Towards the Future</td>
<td>59</td>
</tr>
<tr>
<td>Marcello Onofri, Francesco Nasuti, Renato Paciorri, and Aldo Bonfiglioli</td>
<td></td>
</tr>
</tbody>
</table>

Part II Nozzle Flow

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Modified Pekkari Model to Analyse the Aeroelastic Stability</td>
<td>67</td>
</tr>
<tr>
<td>Behaviour for a Flexible Overexpanded Rocket Nozzle</td>
<td></td>
</tr>
<tr>
<td>N. Bekka, M. Sellam, and A. Chpoun</td>
<td></td>
</tr>
<tr>
<td>Adaptation of the Transpiration Method to Simulate the Fluid–Structure Interaction Phenomena for a Flexible Overexpanded Rocket Nozzle</td>
<td>71</td>
</tr>
<tr>
<td>N. Bekka, M. Sellam, and A. Chpoun</td>
<td></td>
</tr>
<tr>
<td>Transverse Jet Injection into a Supersonic Nozzle Flow</td>
<td>77</td>
</tr>
<tr>
<td>V. Emelyanov, K. Volkov, and M. Yakovchuck</td>
<td></td>
</tr>
</tbody>
</table>
Flow Visualization in Out-of-Round Rocket Nozzles
C. Génin, S. Jack, and R. Stark

Effect of the Adiabatic Index on the Shock Reflection in Overexpanded Nozzle Flow
Emanuele Martelli, Barbara Betti, Francesco Nasuti, and Marcello Onofri

Mixing Enhancement in Free Jets from Supersonic ESTS Lobed Nozzles
Albin Varghese, S.K. Karthick, Srisha M.V. Rao, and Gopalan Jagadeesh

Study of Cluster Linear Plug Nozzle Flow Field in Freestream Flow
M. Viji, Kiran Chutkey, and S.B. Verma

Studies in Free Jets from Supersonic ESTS Lobed Nozzles
Albin Varghese, P. Suriyanarayanan, Srisha M.V. Rao, and Gopalan Jagadeesh

Unsteadiness of Supersonic Flows in Over-Expanded Nozzles
A. Piquet, A. Georges-Picot, and A. Hadjadj

Design of Optimized Two-Dimensional Scramjet Nozzle Contour for Hypersonic Vehicle Using Evolutionary Algorithms
A. Govinda, Manoj Kumar K. Devaraj, Yogendra Singh, Nimesh Thakor, Venkat Rao Kulkarni, S.N. Omkar, and Gopalan Jagadeesh

Passive Flow Control in Laval Nozzles Due to Bypass Mass Flow in Narrow Longitudinal Gaps
M. Giglmaier, M. Krüger-Sprengel, J.F. Quaatz, and N.A. Adams

Part III Hypersonic Flow

Investigation of Chemical Non-equilibrium Hypersonic Flows in Carbon Dioxide–Nitrogen Atmospheres Using a Coupled Euler–Boundary-Layer Method
M. Starkloff and Ch. Mundt

Radiative Heat flux Measurements for Titan Atmospheric Entry Condition in a Superorbital Expansion Tunnel
H. Porat, R.G. Morgan, and T.J. McIntyre

Study of Hypersonic Dissociating Flows over Spheres Using the Space-Time CE/SE Method
H. Saldivar Massimi, H. Shen, and C.Y. Wen

The Direct Measurement of Skin Friction in Shock Tunnel
Lv Zhiguo, Li Guojun, Zhao Rongjuan, Jiang Hua, Liu Jichun, Huang Jun, and Liu Shiran

Effects of Attack Angle on Starting Performance of a Hypersonic Inlet
Shuaitao Guo, Wenzhi Gao, Enlai Zhang, Zhufei Li, and Jiming Yang

Optimization of Hypersonic Power Law Derived Waverider Using TLBO
Yogendra Singh, Manoj Kumar K. Devaraj, S.N. Omkar, and Gopalan Jagadeesh
Contents

Experimental Analysis of Shock Standoff Distance in Hypersonic Flows over Spherical Bodies ... 167
Ruchi Thakur and Gopalan Jagadeesh

Oscillatory Behaviors of a Hypersonic Inlet with Trips ... 173
Wenzhi Gao, Shuaizhao Guo, Zhufei Li, and Jiming Yang

Aerodynamic Force and Moment Measurement Under Duplicated Hypersonic Flight Conditions in the JF12 Shock Tunnel ... 179
Z. Jiang, Y. Wang, Y. Liu, and C. Yuan

Part IV Supersonic and Hypersonic Flows with Shocks

A Method of Detecting Self-Starting Ability of Hypersonic Inlets: A Numerical Investigation ... 185
Zhufei Li and Jiming Yang

Experimental Investigation on the Self-Starting Characteristics of Hypersonic Inlets ... 191
Xiao Xu, Lianjie Yue, Yinan Jia, and Xinyu Chang

An Investigation of Type IV Shock Interaction Over a Blunt Body with Forward-Facing Cavity ... 199
F.S. Xiao, Zhufei Li, Yujian Zhu, and Jiming Yang

Particularities of the Shock Wave Propagation Through the Region of Gas Discharge Plasma ... 205
Tatiana Lapushkina, Alexandr Erofeev, and Sergei Poniaev

Numerical Research of Supersonic Mixing in Conditions of Localized Pulse-Periodic Energy Supply Upstream of Tandem Shock and Expansion Waves ... 211
E. Pimonov and A. Zheltovodov

Effect of Differential Sweep on a Three-Dimensional Sidewall-Type Intake at Mach 3.5 ... 217
C. Manisankar and S.B. Verma

Experimental Study of Dynamic Characteristics of Oblique Shock Trains in Mach 5 Flow ... 223
C.P. Wang, X.A. Tian, and K.M. Cheng

Aero-Optical Measurement in Shock Wave of Hypersonic Flow Field ... 229
Sangyoon Lee, Man Chul Jeong, In-Seuck Jeung, Hyoung Jin Lee, and Jong Kook Lee

Super-/Hypersonic Aero-Optical Effects Induced by External Jet Cooling ... 233
Sangyoon Lee, Hee Yoon, In-Seuck Jeung, Hyoung Jin Lee, and Jong Kook Lee

Thermal Analysis of Scramjet Combustor Panel with Active Cooling Using Cellular Materials ... 239
Ragini Mukherjee, N.K. Gopinath, V. Vignesh, Anupam Purwar, and D. Roy Mahapatra

A Methodology for Coupled Thermal-Structural Analysis and Structural Design of Scramjet Combustor ... 245
Anupam Purwar, D. Roy Mahapatra, Nimesh Thakor, K.S. Priyamvada, and Ragini Mukherjee
Thermomechanical Deformation Behavior of a Hypersonic Waverider Using Finite Element Method .. 251
N.K. Gopinath, V. Vignesh, Yogendra Singh, Manoj Kumar K. Devaraj, and D. Roy Mahapatra

Effect of Mach Number on Shock Oscillations in Supersonic Diffusers 257
S. Manoj Prabakar, Chimakurthy Srikanth, and T.M. Muruganandam

Turbulence Compressibility Effects for Supersonic and Hypersonic Separated Flows ... 263
S. Seror and L. Kosarev

Imaging of the Conical Kelvin-Helmholtz Instability 269
R.T. Paton and B.W. Skews

Shock Standoff Distance over Spheres in Unsteady Flows 275
T. Kikuchi, Kazuyoshi Takayama, Dan Igra, and J. Falcovitz

Part V Supersonic Jets

The Formation of Mach Waves from Supersonic Jets with Outer Co-flowing ... 281
H. Oertel sen., F. Seiler, and J. Srulijes

The Limits of Mach Wave Emission from Supersonic Jets 287
H. Oertel sen., F. Seiler, and J. Srulijes

Overexpanded Jet Flow Theoretical Analysis in the Vicinity of the Nozzle Lip ... 293
M.V. Silnikov, M.V. Chernyshov, and V.N. Uskov

Design and Validation of an Uncooled Pitot Probe for Hot, Supersonic Flow Investigations .. 299
Felix J. Förster, Nils C. Dröske, Jens von Wolfersdorf, and Bernhard Weigand

Large Eddy Simulation of a Supersonic Underexpanded Square Jet 305
Huanhao Zhang and Zhihua Chen

Part VI Chemical Kinetics and Chemical Reacting Flows

Species Time-History Measurements During Jet Fuel Pyrolysis 309
D.F. Davidson, A. Tulgestke, Y. Zhu, S. Wang, and R.K. Hanson

Rapid Chemiluminescent Imaging Behind Reflected Shock Waves 313
D.F. Davidson, A. Tulgestke, C. Strand, M.F. Campbell, V.A. Troutman, V.A. Miller, and R.K. Hanson

Shock Tube Experimental and Theoretical Study on the Thermal Decomposition of 2-Phenylethanol .. 317
M. Kiran Singh, K.P.J. Reddy, and E. Arunan

Soot Formation During Pyrolysis and Oxidation of Aliphatic and Aromatic Hydrocarbons in Shock Waves: Experiments and Detailed Kinetic Modeling .. 321

3-Carene Oxidation Mechanism ... 327
N. Sharath, K.P.J. Reddy, P.K. Barhai, and E. Arunan

Shock Tube Ignition Delay Studies of Dicyclopentadiene 333
Kunal V. Dhoke, K.P.J. Reddy, and E. Arunan
Model Order Reduction for Reacting Flows: Laminar Gaussian Flame Applications .. 337
Van Bo Nguyen, H.-S. Dou, K. Willcox, and Boo-Cheong Khoo

Numerical Simulation of the Flow with Chemical Reactions Around a Wedge .. 345
Georgy Shoev and Yevgeny A. Bondar

Computations of a Shock Layer Flow Field with Global and Detailed Chemistry Models .. 351
Marie-Claude Druguet, Arnaud Bultel, Julien Annaloro, and Pierre Omaly

On a Relaxation Zone Structure for Shock Waves Forming in Non-equilibrium Air Flows .. 357
O. Kunova and E. Nagnibeda

Investigation of Non-catalytic Reaction of Shock-Heated Nitrogen Gas with Powder SiO₂ .. 361

Part VII Detonation, Combustion and Ignition

On the Deflagration-to-Detonation Transition in Narrow Tube with Varying Prechamber-Initiator .. 369
S. Golovastov, G. Bivol, and V. Golub

Experimental Research on Deflagration-to-Detonation Transition (DDT) in an S-Shaped Tube .. 375
Li Lei, Teo Chiang Juay, Li Jiun-Ming, Po-Shiung Chang, and Boo-Cheong Khoo

DDT Triggered by SWBLI: Numerical and Experimental Research .. 381
E. Dzieminska, A.K. Hayashi, T. Machida, and J. Misawa

Flame Acceleration and DDT in a Torus Geometry .. 385
M. Kuznetsov, J. Yanez, and J. Grune

Unconfined Hybrid Detonation in Gas–Particle Flow .. 391
F. Zhang, A. Yoshinaka, and R.C. Ripley

Numerical Simulation of Combustion Process for Two-Phase Fuel Flows Related to Pulse Detonation Engines .. 397
Van Bo Nguyen, Li Jiun-Ming, Teo Chiang Juay, and Boo-Cheong Khoo

Simulation of Laser-Induced Detonation in Particulate Systems with Applications to Pulse Detonation Engines .. 405
P. Bulat and K. Volkov

Criterion for Detonation Transition in Liquid-Fuel Pulse Detonation Engines .. 411
J. Li, C.J. Teo, L. Li, P.H. Chang, and Boo-Cheong Khoo

Numerical Simulation of Reactive Gas Mixes Flows in the Detonation Engines .. 415
S.N. Martyushov
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilization of Detonation Combustion of a Supersonic Flow</td>
<td>419</td>
</tr>
<tr>
<td>due to Using the Special Form Plane Channel</td>
<td></td>
</tr>
<tr>
<td>V.A. Levin and T.A. Zhuravskaya</td>
<td></td>
</tr>
<tr>
<td>Role of Wall Temperature on Shock Train in a Rectangular Isolator</td>
<td>425</td>
</tr>
<tr>
<td>Lianjie Yue, Hongbo Lu, Yabin Xiao, Lihong Chen, and Xinyu Chang</td>
<td></td>
</tr>
<tr>
<td>The Correlation Between Detonation Cell Size and Ignition Delay Time</td>
<td>431</td>
</tr>
<tr>
<td>Y.F. Liu, W. Zhang, and Z. Jiang</td>
<td></td>
</tr>
<tr>
<td>An Investigation of the Prompt Oblique Detonation Wave Induced by a</td>
<td>435</td>
</tr>
<tr>
<td>Finite-Length Wedge</td>
<td></td>
</tr>
<tr>
<td>Yan Liu and Jianping Wang</td>
<td></td>
</tr>
<tr>
<td>Formation of 3D Detonation in Supersonic Flows by Solid Walls of</td>
<td>441</td>
</tr>
<tr>
<td>Special Shape</td>
<td></td>
</tr>
<tr>
<td>V.A. Levin, I.S. Manuylovich, and V.V. Markov</td>
<td></td>
</tr>
<tr>
<td>Cellular and Spin Detonation in 3D Channels</td>
<td>447</td>
</tr>
<tr>
<td>V.A. Levin, I.S. Manuylovich, and V.V. Markov</td>
<td></td>
</tr>
<tr>
<td>Galloping Detonation in a Fuel Mixture Jet</td>
<td>453</td>
</tr>
<tr>
<td>V.A. Levin, I.S. Manuylovich, and V.V. Markov</td>
<td></td>
</tr>
<tr>
<td>Propagation of Out Warding Flame for Combustible Gas in Cylindrical</td>
<td>457</td>
</tr>
<tr>
<td>Confinement</td>
<td></td>
</tr>
<tr>
<td>Wenhua Han and Wenjun Kong</td>
<td></td>
</tr>
<tr>
<td>Investigation on PIV and PLIF Laser Diagnostics in Turbulent</td>
<td>461</td>
</tr>
<tr>
<td>Combustion Field</td>
<td></td>
</tr>
<tr>
<td>Long Zhang, Furong Yang, Tie Su, Shuang Chen, Jianjun Yang, and Yungang Wu</td>
<td></td>
</tr>
<tr>
<td>Modeling of Aerobic Combustion</td>
<td>467</td>
</tr>
<tr>
<td>T. Hartmann, E. Rottenkolber, and A. Boimel</td>
<td></td>
</tr>
<tr>
<td>Investigations of Equivalence Ratio on Operational Liquid-Fuel Pulse</td>
<td>473</td>
</tr>
<tr>
<td>Detonation Engines</td>
<td></td>
</tr>
<tr>
<td>J. Li, C.J. Teo, L. Li, K.S. Lim, and Boo-Cheong Khoo</td>
<td></td>
</tr>
<tr>
<td>Detonation of Mechanoactivated Mixture of Ammonium Perchlorate with</td>
<td>479</td>
</tr>
<tr>
<td>Aluminum</td>
<td></td>
</tr>
<tr>
<td>Alexander Dolgoborodov, Vladimir Kirilenko, Michael Brazhnikov</td>
<td></td>
</tr>
<tr>
<td>Arseny Shevchenko, and Victor Teselkin</td>
<td></td>
</tr>
<tr>
<td>Detonation Transition in Relatively Short Tubes</td>
<td>481</td>
</tr>
<tr>
<td>M. Kuznetsov, A. Lelyavin, V. Alekseev, and I. Matsukov</td>
<td></td>
</tr>
<tr>
<td>Propagation of a Pressure-Dependent Detonation with Different Acoustic Impedance Confinements</td>
<td>487</td>
</tr>
<tr>
<td>Jianling Li, Xiaocheng Mi, and Andrew J. Higgins</td>
<td></td>
</tr>
<tr>
<td>Kerosene Ignition and Combustion: An Experimental Study</td>
<td>493</td>
</tr>
<tr>
<td>Alexander Burcat, Erna Olchansky, Ulla Steil, and Marina Braun-Unkhoff</td>
<td></td>
</tr>
</tbody>
</table>
Contents

On Influence of Carbon Tetrachloride on Combustible Mixtures
Ignition at Various Temperature Ranges 501
A. Drakon and A. Eremin

Temperature Measurements in the Combustion Zone Behind
the Reflected Shock Waves .. 507
A. Drakon, A. Eremin, E. Gurentsov, and E. Mikheyeva

On the Initiation of Combustion by Means of Supersonic
High-Enthalpy Jet .. 511
S.S. Katsnelson, G.A. Pozdnyakov, and D.A. Aleksandrovsky

A Test of Ignition Behaviors Induced by a Smoothly Convergent
Cylindrical Shock .. 519
Yang Jianting, Yujian Zhu, and Jiming Yang

Part VIII Propulsion

Nonstationary Interaction of Incoming Flow with Ablative Jet
in Supersonic Laser Propulsion 527
A.A. Schmidt and Yu. A. Rezunkov

Axisymmetric Compressible Flow for the Resistojet
Thruster Module ... 531
S.M. Chang

Secondary Injectant Gas Thermodynamic Properties Effects
on Fluidic Thrust Vectoring Performances
of a Supersonic Nozzle ... 539
A. Chpoun, M. Sellam, V. Zmijanovic, and L. Leger

Part IX Shock Wave Reflection and Interaction

Three-Dimensional Bow-Shock Interactions Between High-Speed
Slender Bodies at Incidence ... 547
S.J. Hooseria and B.W. Skews

Flow Behind Mach Reflection and the Neumann Paradox 553
A. Sakurai

The Mach Reflection of a Converging Cylindrical Shock
Wave Segment Encountering a Straight Wedge 559
B.J. Gray and B.W. Skews

Reflection of Cylindrical Converging Shock Wave Over Wedge ... 563
Zhigang Zhai, Fu Zhang, and Xisheng Luo

Numerical Study of the Interaction Process Between a Planar Shock
Wave and a Square Cavity Filled with Different Gases 569
Dan Igra and Ozer Igra

Flow Phenomena of An Expansion Wave Entering a Cylindrical Cavity 575
M.S. Whalley, B.W. Skews, and R.T. Paton

Investigation of an Expansion Fan/Shock Wave Interaction Between
Low Aspect Ratio Wedges .. 581
L. Nel and B.W. Skews
S. Kobayashi and T. Adachi

Experimental Investigation of Normal Shock Wave-Counter Flow Interactions .. 615
T. Tamba, N.M. Tuan, A. Iwakawa, and A. Sasoh

Shock Wave Reflection Over Roughened Wedges 621
Dan Igra, Kazuyoshi Takayama, and Ozer Igra

Surface Oxidation Study of ZrB2–SiC Composite for Re-entry Applications Using Free Piston-Driven Shock Tube .. 627

Shock Wave Reflections Over Newtonian and Non-Newtonian Wedges: Experimental Investigation 631
H. Jeon, N. Amen, and V. Eliasson

Ground Effect of Transonic and Supersonic Projectiles: Influence of Mach Number and Ground Clearance .. 635
C. Sheridan, J. Young, Herald Kleine, Koju Hiraki, and Satoshi Nonaka

The Influence of Concave Wedge Tips on Shock Reflection Patterns 641
Harald Kleine, Federico Alzamori Previtali, and Evgeny Timofeev

Shock Tunnel Studies on Shock–Shock Interaction 647
Abhishek Khatta and Gopalan Jagadeesh

A Study on Unsteady Shear Layer–Shock Interaction in a Vacuum Ejector-Diffuser System 653
R. Arun Kumar and G. Rajesh

The Compressible Shear Layer of a Mach Reflection 659
R.E. Hall, B.W. Skews, and R.T. Puton

Experimental Study of Mach Reflection in Cellular Detonation of C2H2–O2–8.17Ar .. 665
Jie Liu and DU Zhong-hua
Dense Particle Cloud Deflection During Shock Interaction 755
R.C. Ripley, S.D. Ryan, and C.M. Jenkins

Shock Mitigation by Dust Lofting: Theoretical Perspective 761
A. Lipshtat and S. Pistinner

Dust Lofting Behind a Shock Wave 767
Y. Lefler, S. Pistinner, Oren Sadot, and A. Yaffe

Shock Ignition of Reactive Particles 771
M.G. Omang and J.K. Trulsen

Author Index ... 777

Subject Index .. 783
30th International Symposium on Shock Waves 1
ISSW30 - Volume 1
Ben-Dor, G.; Sadot, O.; Igra, O. (Eds.)
2017, XXXI, 788 p. 778 illus., 355 illus. in color.,
Hardcover
ISBN: 978-3-319-46211-0