Contents

Nanomedicine for Cancer Therapy .. 1

1 Introduction ... 1

2 Conventional Therapy for Breast Cancer 2
 2.1 Limitation of Conventional Therapy 2

3 Multiple Drug Resistance (MDR) ... 3
 3.1 Drug Efflux and Decrease in Drug Uptake 3
 3.2 Alteration in Drug Target (Topoisomerase II) 5
 3.3 Change in Detoxifying Enzyme Such Glutathione
 S-Transferase and Cytochrome P450 5
 3.4 Increase in DNA Repair .. 5
 3.5 Inhibition of Apoptosis by Disruption of Cell Signalling 5
 3.6 Therapy with Multiple Drug Delivery 6

4 Application of Nanoparticles in Cancer 10
 4.1 Types of Carriers (NPs) and Its Role in Nanomedicine for
 Cancer Therapy ... 10

5 Targeting or Delivery of NPs to the Cancer Cells 18
 5.1 Passive Targeting ... 18
 5.2 Active Targeting or Ligand-Mediated Targeting 19

6 Role of Nanomedicine in Modern Day Cancer Therapy 22
 6.1 Gene Therapy ... 22
 6.2 Photodynamic Therapy .. 24
 6.3 Drug Resistance and Heat .. 29
 6.4 Therapy Based Thermal Ablation and Hyperthermia 29
 6.5 Nanoparticles Based Hyperthermia 35
 6.6 Nanoparticles Based Magnetic Hyperthermia 36
 6.7 Nano Radiofrequency Hyperthermia: NRFH 37
 6.8 Photothermal Therapy (PTT) with Nanoparticles
 Formulation ... 38
 6.9 Nano High Intensity Focussed Ultrasound Hyperthermia
 (NHIFU) ... 45
<table>
<thead>
<tr>
<th></th>
<th>Combinatorial Therapy with Hyperthermia</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Hyperthermia and Radiation</td>
<td>47</td>
</tr>
<tr>
<td>7.2</td>
<td>Hyperthermia and Drugs</td>
<td>47</td>
</tr>
<tr>
<td>7.3</td>
<td>Hyperthermia with Photosensitization</td>
<td>51</td>
</tr>
<tr>
<td>8</td>
<td>Clinical Trials, Success, and Challenges</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>Conclusion</td>
<td>56</td>
</tr>
<tr>
<td>10</td>
<td>Challenges</td>
<td>56</td>
</tr>
<tr>
<td>11</td>
<td>Prospective</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>58</td>
</tr>
</tbody>
</table>
Nanomedicine for Cancer Therapy
From Chemotherapeutic to Hyperthermia-Based Therapy
Kumar, P.; Srivastava, R.
2017, VIII, 68 p. 17 illus., 2 illus. in color., Softcover
ISBN: 978-3-319-45825-0