2.1 Exponential Distribution

To prepare for our discussion of the Poisson process, we need to recall the definition and some of the basic properties of the exponential distribution. A random variable T is said to have an exponential distribution with rate λ, or $T = \text{exponential}(\lambda)$, if

$$P(T \leq t) = 1 - e^{-\lambda t} \quad \text{for all } t \geq 0$$ \hspace{1cm} (2.1)

Here we have described the distribution by giving the distribution function $F(t) = P(T \leq t)$. We can also write the definition in terms of the density function $f_T(t)$ which is the derivative of the distribution function.

$$f_T(t) = \begin{cases} \lambda e^{-\lambda t} & \text{for } t \geq 0 \\ 0 & \text{for } t < 0 \end{cases}$$ \hspace{1cm} (2.2)

Integrating by parts with $f(t) = t$ and $g'(t) = \lambda e^{-\lambda t}$,

$$ET = \int_0^\infty t \cdot \lambda e^{-\lambda t} \, dt$$

$$= -te^{-\lambda t}\bigg|_0^\infty + \int_0^\infty e^{-\lambda t} \, dt = 1/\lambda$$ \hspace{1cm} (2.3)

Integrating by parts with $f(t) = t^2$ and $g'(t) = \lambda e^{-\lambda t}$, we see that

$$ET^2 = \int_0^\infty t^2 \cdot \lambda e^{-\lambda t} \, dt$$

$$= -t^2e^{-\lambda t}\bigg|_0^\infty + \int_0^\infty 2te^{-\lambda t} \, dt = 2/\lambda^2$$ \hspace{1cm} (2.4)
by the formula for ET. So the variance

$$\text{var}(T) = ET^2 - (ET)^2 = 1/\lambda^2 \quad (2.5)$$

While calculus is required to know the exact values of the mean and variance, it is easy to see how they depend on λ. Let T = exponential(λ), i.e., have an exponential distribution with rate λ, and let S = exponential(1). To see that S/λ has the same distribution as T, we use (2.1) to conclude

$$P(S/\lambda \leq t) = P(S \leq \lambda t) = 1 - e^{-\lambda t} = P(T \leq t)$$

Recalling that if c is any number then $E(cX) = cEX$ and $\text{var}(cX) = c^2 \text{var}(X)$, we see that

$$ET = ES/\lambda \quad \text{var}(T) = \text{var}(S)/\lambda^2$$

Lack of Memory Property It is traditional to formulate this property in terms of waiting for an unreliable bus driver. In words, “if we’ve been waiting for t units of time then the probability we must wait s more units of time is the same as if we haven’t waited at all.” In symbols

$$P(T > t + s|T > t) = P(T > s) \quad (2.6)$$

To prove this we recall that if $B \subset A$, then $P(B|A) = P(B)/P(A)$, so

$$P(T > t + s|T > t) = \frac{P(T > t + s)}{P(T > t)} = \frac{e^{-\lambda(t+s)}}{e^{-\lambda t}} = e^{-\lambda s} = P(T > s)$$

where in the third step we have used the fact $e^{a+b} = e^a e^b$.

Exponential Races Let S = exponential(λ) and T = exponential(μ) be independent. In order for the minimum of S and T to be larger than t, each of S and T must be larger than t. Using this and independence we have

$$P(\text{min}(S, T) > t) = P(S > t, T > t) = P(S > t)P(T > t)$$

$$= e^{-\lambda t}e^{-\mu t} = e^{-(\lambda+\mu)t} \quad (2.7)$$

That is, $\text{min}(S, T)$ has an exponential distribution with rate $\lambda + \mu$.

We will now consider: “Who finishes first?” Breaking things down according to the value of S and then using independence with our formulas (2.1) and (2.2) for the distribution and density functions, to conclude

$$P(S < T) = \int_0^\infty f_S(s)P(T > s) \, ds$$
2.1 Exponential Distribution

$$= \int_{0}^{\infty} \lambda e^{-\lambda s} e^{-\mu s} ds$$

$$= \frac{\lambda}{\lambda + \mu} \int_{0}^{\infty} (\lambda + \mu) e^{-(\lambda + \mu)s} ds = \frac{\lambda}{\lambda + \mu}$$

(2.8)

where on the last line we have used the fact that $(\lambda + \mu) e^{-(\lambda + \mu)s}$ is a density function and hence must integrate to 1.

Example 2.1. Anne and Betty enter a beauty parlor simultaneously, Anne to get a manicure and Betty to get a haircut. Suppose the time for a manicure (haircut) is exponentially distributed with mean 20 (30) minutes. (a) What is the probability Anne gets done first? (b) What is the expected amount of time until Anne and Betty are both done?

(a) The rates are 1/20 and 1/30 per hour so Anne finishes first with probability

$$\frac{1/20}{1/20 + 1/30} = \frac{30}{30 + 20} = \frac{3}{5}$$

(b) The total service rate is $1/30 + 1/20 = 5/60$, so the time until the first customer completes service is exponential with mean 12 minutes. With probability 3/5, Anne is done first. When this happens the lack of memory property of the exponential implies that it will take an average of 30 minutes for Betty to complete her haircut. With probability 2/5’s Betty is done first and Anne will take an average of 20 more minutes. Combining we see that the total waiting time is

$$12 + (3/5) \cdot 30 + (2/5) \cdot 20 = 12 + 18 + 8 = 38$$

Races, II. n Random Variables The last two calculations extend easily to a sequence of independent random variables $T_i = \text{exponential}(\lambda_i), 1 \leq i \leq n$.

Theorem 2.1. Let $V = \min(T_1, \ldots, T_n)$ and I be the (random) index of the T_i that is smallest.

$$P(V > t) = \exp(-\lambda_1 + \cdots + \lambda_n)t$$

$$P(I = i) = \frac{\lambda_i}{\lambda_1 + \cdots + \lambda_n}$$

I and $V = \min\{T_1, \ldots, T_n\}$ are independent.

Proof. Arguing as in the case of two random variables:

$$P(\min(T_1, \ldots, T_n) > t) = P(T_1 > t, \ldots, T_n > t)$$

$$= \prod_{i=1}^{n} P(T_i > t) = \prod_{i=1}^{n} e^{-\lambda_i t} = e^{-(\lambda_1 + \cdots + \lambda_n)t}$$
That is, the minimum, \(\min(T_1, \ldots, T_n) \), of several independent exponentials has an exponential distribution with rate equal to the sum of the rates \(\lambda_1 + \cdots + \lambda_n \).

To prove the second result let \(S = T_i \) and \(U \) be the minimum of \(T_j, j \neq i \). (2.1) implies that \(U \) is exponential with parameter

\[
\mu = (\lambda_1 + \cdots + \lambda_n) - \lambda_i
\]

so using the result for two random variables

\[
P(T_i = \min(T_1, \ldots, T_n)) = P(S < U) = \frac{\lambda_i}{\lambda_i + \mu} = \frac{\lambda_i}{\lambda_1 + \cdots + \lambda_n}
\]

To prove the independence let \(I \) be the (random) index of the \(T_i \) that is smallest. Let \(f_{i,V}(t) \) be the density function for \(V \) on the set \(I = i \). In order for \(i \) to be first at time \(t \), \(T_i = t \) and the other \(T_j > t \) so

\[
f_{i,V}(t) = \lambda_i e^{-\lambda_i t} \cdot \prod_{j \neq i} e^{-\lambda_j t}
\]

\[
= \frac{\lambda_i}{\lambda_1 + \cdots + \lambda_n} \cdot (\lambda_1 + \cdots + \lambda_n) e^{-(\lambda_1 + \cdots + \lambda_n) t}
\]

\[
= P(I = i) \cdot f_V(t)
\]

since \(V \) has an exponential(\(\lambda_1 + \cdots + \lambda_n \)) distribution.

Example 2.2. A submarine has three navigational devices but can remain at sea if at least two are working. Suppose that the failure times are exponential with means 1 year, 1.5 years, and 3 years. (a) What is the average length of time the boat can remain at sea? (b) Call the parts \(A \), \(B \), and \(C \). Find the probabilities for the six orders in which the failures can occur.

(a) The rates for the three exponentials are 1, 2/3, and 1/3, per year. Thus the time to the first failure is exponential with rate \(2 = 1 + 2/3 + 1/3 \), so the mean time to first failure is 1/2. 1/2 of the time part 1 is the first to fail. In this case the time to the next failure has rate \(2/3 + 1/3 = 1 \) so the mean is 1. Part 2 is the first to fail with probability 2/6. In this case the time to the next failure has rate \(1 + 1/3 = 4/3 \) or mean 3/4. Part 3 is the first to fail with probability 1/6. In this case the time to the next failure has rate \(1 + 2/3 = 5/3 \) and mean 3/5. Adding things up the mean time until the second failure is

\[
\frac{1}{2} + (1/2) \cdot 1 + (1/3) \cdot (3/4) + (1/6) \cdot (3/5)
\]

\[
= .5 + .5 + .25 + .10 = 1.35 \text{ years}
\]
2.1 Exponential Distribution

For (b) the arithmetic is easier if we think of the rates as 3, 2, and 1.

\[
\begin{align*}
ABC & \quad (1/2)(2/3) = 1/3 = 20/60 \\
ACB & \quad (1/2)(1/3) = 1/6 = 10/60 \\
BAC & \quad (1/3)(3/4) = 1/4 = 15/60 \\
BCA & \quad (1/3)(1/4) = 1/12 = 5/60 \\
CAB & \quad (1/6)(3/5) = 1/10 = 6/60 \\
CBA & \quad (1/6)(2/5) = 2/30 = 4/60
\end{align*}
\]

Our final fact in this section concerns sums of exponentials.

Theorem 2.2. Let \(\tau_1, \tau_2, \ldots \) be independent exponential(\(\lambda \)). The sum \(T_n = \tau_1 + \cdots + \tau_n \) has a gamma(\(n, \lambda \)) distribution. That is, the density function of \(T_n \) is given by

\[
f_{T_n}(t) = \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} \quad \text{for } t \geq 0
\]

and 0 otherwise.

Proof. The proof is by induction on \(n \). When \(n = 1 \), \(T_1 \) has an exponential(\(\lambda \)) distribution. Recalling that the 0th power of any positive number is 1, and by convention we set 0! = 1, the formula reduces to

\[
f_{T_1}(t) = \lambda e^{-\lambda t}
\]

and we have shown that our formula is correct for \(n = 1 \).

To do the induction step, suppose that the formula is true for \(n \). The sum \(T_{n+1} = T_n + \tau_{n+1} \), so breaking things down according to the value of \(T_n \), and using the independence of \(T_n \) and \(\tau_{n+1} \), we have

\[
f_{T_{n+1}}(t) = \int_0^t f_{T_n}(s)f_{\tau_{n+1}}(t-s) \, ds
\]

Plugging the formula from (2.9) in for the first term and the exponential density in for the second and using the fact that \(e^{a}e^{b} = e^{a+b} \) with \(a = -\lambda s \) and \(b = -\lambda (t-s) \) gives

\[
\int_0^t \lambda e^{-\lambda s} \frac{(\lambda s)^{n-1}}{(n-1)!} \cdot \lambda e^{-\lambda(t-s)} \, ds = \lambda e^{-\lambda t} \frac{1}{n!} \int_0^t s^{n-1} \, ds
\]

\[
= \lambda e^{-\lambda t} \frac{\lambda^n t^n}{n!}
\]

which completes the proof. \(\square \)
2.2 Defining the Poisson Process

In order to prepare for the definition of the Poisson process, we introduce the Poisson distribution and derive some of its properties.

Definition. We say that X has a **Poisson distribution** with mean λ, or $X \sim \text{Poisson}(\lambda)$, for short, if

$$P(X = n) = e^{-\lambda} \frac{\lambda^n}{n!} \quad \text{for } n = 0, 1, 2, \ldots$$

The next result computes the moments of the Poisson.

Theorem 2.3. For any $k \geq 1$

$$EX(X - 1) \cdots (X - k + 1) = \lambda^k$$

(2.10)

and hence $\text{var}(X) = \lambda$

Proof. $X(X - 1) \cdots (X - k + 1) = 0$ if $X \leq k - 1$ so

$$EX(X - 1) \cdots (X - k + 1) = \sum_{j=k}^{\infty} e^{-\lambda} \frac{\lambda^j}{j!} j(j-1) \cdots (j-k+1)$$

$$= \lambda^k \sum_{j=k}^{\infty} e^{-\lambda} \frac{\lambda^{j-k}}{(j-k)!} = \lambda^k$$

since the sum gives the total mass of the Poisson distribution. Using $\text{var}(X) = E(X(X - 1)) + EX - (EX)^2$ we conclude

$$\text{var}(X) = \lambda^2 + \lambda - (\lambda)^2 = \lambda$$

\square

Theorem 2.4. If X_i are independent $\text{Poisson}(\lambda_i)$, then

$$X_1 + \cdots + X_k = \text{Poisson}(\lambda_1 + \cdots + \lambda_n).$$

Proof. It suffices to prove the result for $k = 2$, for then the general result follows by induction.

$$P(X_1 + X_2 = n) = \sum_{m=0}^{n} P(X_1 = m)P(X_2 = n - m)$$

$$= \sum_{m=0}^{n} e^{-\lambda_1} \frac{\lambda_1^m}{m!} \cdot e^{-\lambda_2} \frac{(\lambda_2)^{n-m}}{(n-m)!}$$

$$= e^{-\lambda_1 - \lambda_2} \sum_{m=0}^{n} \frac{\lambda_1^m (\lambda_2)^{n-m}}{m!(n-m)!}$$
Knowing the answer we want, we can rewrite the last expression as

\[e^{-(\lambda_1 + \lambda_2)} \frac{(\lambda_1 + \lambda_2)^n}{n!} \sum_{m=0}^{n} \binom{n}{m} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^m \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{n-m} \]

The sum is 1, since it is the sum of all the probabilities for a binomial\((n, p)\) distribution with \(p = \lambda_1 / (\lambda_1 + \lambda_2)\). The term outside the sum is the desired Poisson probability, so have proved the desired result. \(\square\)

We are now ready to define the Poisson process. To do this think about people arriving to use an ATM, and let \(N(s)\) be the number of arrivals in \([0, s]\).

Definition. \(\{N(s), s \geq 0\}\) is a Poisson process, if (i) \(N(0) = 0\),

(ii) \(N(t + s) - N(s) = \text{Poisson}(\lambda t)\), and

(iii) \(N(t)\) has independent increments, i.e., if \(t_0 < t_1 < \ldots < t_n\) then

\[N(t_1) - N(t_0), \ldots N(t_n) - N(t_{n-1}) \]

are independent.

To motivate the definition, suppose that each of the \(n \approx 7000\) undergraduate students on Duke campus flips a coin with probability \(\lambda / n\) of heads to decide if they will go to an ATM in the Bryan Center between 12:17 and 12:18. The probability that exactly \(k\) students will go during the one-minute time interval is given by the binomial\((n, \lambda / n)\) distribution

\[\frac{n(n-1) \cdots (n-k+1)}{k!} \left(\frac{\lambda}{n} \right)^k \left(1 - \frac{\lambda}{n} \right)^{n-k} \quad (2.11) \]

Theorem 2.5. If \(n\) is large, the binomial\((n, \lambda / n)\) distribution is approximately Poisson\((\lambda)\).

Proof. Exchanging the numerators of the first two fractions and breaking the last term into two, \((2.11)\) becomes

\[\frac{\lambda^k}{k!} \cdot \frac{n(n-1) \cdots (n-k+1)}{n^k} \cdot \left(1 - \frac{\lambda}{n} \right)^n \left(1 - \frac{\lambda}{n} \right)^{-k} \quad (2.12) \]

Considering the four terms separately, we have

(i) \(\lambda^k / k!\) does not depend on \(n\).

(ii) There are \(k\) terms on the top and \(k\) terms on the bottom, so we can write this fraction as

\[\frac{n \cdot n-1 \cdots n-k+1}{n \cdot n \cdots n} \]
For any j we have $(n - j)/n \to 1$ as $n \to \infty$, so the second term converges to 1 as $n \to \infty$.

(iii) Skipping to the last term in (2.12), $\lambda/n \to 0$, so $1 - \lambda/n \to 1$. The power $-k$ is fixed so
\[
\left(1 - \frac{\lambda}{n}\right)^{-k} \to 1^{-k} = 1
\]

(iv) We broke off the last piece to make it easier to invoke one of the famous facts of calculus:
\[
(1 - \lambda/n)^n \to e^{-\lambda} \quad \text{as } n \to \infty.
\]

If you haven’t seen this before, recall that
\[
\log(1 - x) = -x + x^2/2 + \ldots
\]
so we have $n \log(1 - \lambda/n) = -\lambda + \lambda^2/n + \ldots \to \lambda$ as $n \to \infty$.

Combining (i)–(iv), we see that (2.12) converges to
\[
\frac{\lambda^k}{k!} \cdot 1 \cdot e^{-\lambda} \cdot 1
\]
which is the Poisson distribution with mean λ.

By extending the last argument we can also see why the number of individuals that arrive in two disjoint time intervals should be independent. Using the multinomial instead of the binomial, we see that the probability j people will go between 12:17 and 12:18 and k people will go between 12:18 and 12:20 is
\[
\frac{n!}{j!k!(n - j - k)!} \left(\frac{\lambda}{n}\right)^j \left(\frac{2\lambda}{n}\right)^k \left(1 - \frac{3\lambda}{n}\right)^{n-(j+k)}
\]
Rearranging gives
\[
\left(\frac{\lambda^j}{j!} \cdot \frac{(2\lambda)^k}{k!} \cdot \frac{n(n-1)\cdots(n-j-k+1)}{n^{j+k}}\right) \left(1 - \frac{3\lambda}{n}\right)^{n-(j+k)}
\]
Reasoning as before shows that when n is large, this is approximately
\[
\frac{(\lambda)^j}{j!} \cdot \frac{(2\lambda)^k}{k!} \cdot 1 \cdot e^{-3\lambda}
\]
Writing $e^{-3\lambda} = e^{-\lambda}e^{-2\lambda}$ and rearranging we can write the last expression as
\[
e^{-\lambda} \frac{\lambda^j}{j!} \cdot e^{-2\lambda} \frac{(2\lambda)^k}{k!}
\]
This shows that the number of arrivals in the two time intervals we chose are independent Poissons with means λ and 2λ.

The last proof can be easily generalized to show that if we divide the hour between 12:00 and 1:00 into any number of intervals, then the arrivals are independent Poissons with the right means. However, the argument gets very messy to write down.

2.2.1 Constructing the Poisson Process

Definition. Let τ_1, τ_2, \ldots be independent exponential(λ) random variables. Let $T_n = \tau_1 + \cdots + \tau_n$ for $n \geq 1$, $T_0 = 0$, and define $N(s) = \max\{n : T_n \leq s\}$.

We think of the τ_n as times between arrivals of customers at the ATM, so $T_n = \tau_1 + \cdots + \tau_n$ is the arrival time of the nth customer, and $N(s)$ is the number of arrivals by time s. To check the last interpretation, consider the following example:

```
0   $\tau_1$   $\times$   $\tau_2$   $\times$   $\tau_3$   $\times$   $\tau_4$   $\times$   $\tau_5$   $\times$
```

and note that $N(s) = 4$ when $T_4 \leq s < T_5$, that is, the 4th customer has arrived by time s but the 5th has not.

To show that this constructs the Poisson process we begin by checking (ii).

Lemma 2.6. $N(s)$ has a Poisson distribution with mean λs.

Proof. Now $N(s) = n$ if and only if $T_n \leq s < T_{n+1}$; i.e., the nth customer arrives before time s but the $(n + 1)$th after s. Breaking things down according to the value of $T_n = t$ and noting that for $T_{n+1} > s$, we must have $\tau_{n+1} > s - t$, and τ_{n+1} is independent of T_n, it follows that

$$P(N(s) = n) = \int_0^s f_{T_n}(t)P(\tau_{n+1} > s - t) \, dt$$

Plugging in (2.9) now, the last expression is

$$= \int_0^s \lambda e^{-\lambda t} (\lambda t)^{n-1} \cdot e^{-\lambda(s-t)} \, dt$$

$$= \frac{\lambda^n}{(n-1)!} e^{-\lambda s} \int_0^s t^{n-1} \, dt = e^{-\lambda s} \frac{(\lambda s)^n}{n!}$$

which proves the desired result. \(\square\)

The key to proving (iii) is the following Markov property:
Lemma 2.7. \(N(t + s) - N(s), \ t \geq 0\) is a rate \(\lambda\) Poisson process and independent of \(N(r), \ 0 \leq r \leq s\).

Why is this true? Suppose for concreteness (and so that we can reuse the last picture) that by time \(s\) there have been four arrivals \(T_1, T_2, T_3, T_4\) that occurred at times \(t_1, t_2, t_3, t_4\). We know that the waiting time for the fifth arrival must have \(\tau_5 > s - t_4\), but by the lack of memory property of the exponential distribution (2.6)

\[
P(\tau_5 > s - t_4 + |\tau_5 > s - t_4) = P(\tau_5 > t) = e^{-\lambda t}
\]

This shows that the distribution of the first arrival after \(s\) is exponential(\(\lambda\)) and independent of \(T_1, T_2, T_3, T_4\). It is clear that \(\tau_6, \tau_7, \ldots\) are independent of \(T_1, T_2, T_3, T_4\), and \(\tau_5\). This shows that the interarrival times after \(s\) are independent exponential(\(\lambda\)), and hence that \(N(t + s) - N(s), \ t \geq 0\) is a Poisson process. \(\square\)

From Lemma 2.7 we get easily the following:

Lemma 2.8. \(N(t)\) has independent increments.

Why is this true? Lemma 2.7 implies that \(N(t_n) - N(t_{n-1})\) is independent of \(N(r), \ r \leq t_{n-1}\) and hence of \(N(t_{n-1}) - N(t_{n-2}), \ldots N(t_1) - N(t_0)\). The desired result now follows by induction. \(\square\)

2.2.2 More Realistic Models

Two of the weaknesses of the derivation above are

(i) All students are assumed to have exactly the same probability of going to the ATM.

(ii) The probability of going in a given time interval is a constant multiple of the length of the interval, so the arrival rate of customers is constant during the day, i.e., the same at 1 p.m. and at 1 a.m.

(i) is a very strong assumption but can be weakened by using a more general Poisson approximation result like the following:

Theorem 2.9. Let \(X_{n,m}, 1 \leq m \leq n\) be independent random variables with

\[
P(X_m = 1) = p_m\ and \ P(X_m = 0) = 1 - p_m. \ Let
\]

\[
S_n = X_1 + \cdots + X_n, \quad \lambda_n = ES_n = p_1 + \cdots + p_n,
\]

and \(Z_n = \text{Poisson}(\lambda_n)\). Then for any set \(A\)

\[
|P(S_n \in A) - P(Z_n \in A)| \leq \sum_{m=1}^{n} p_m^2
\]
2.2 Defining the Poisson Process

Why is this true? If X and Y are integer valued random variables, then for any set A

$$|P(X \in A) - P(Y \in A)| \leq \frac{1}{2} \sum_n |P(X = n) - P(Y = n)|$$

The right-hand side is called the total variation distance between the two distributions and is denoted $\|X - Y\|$. If $P(X = 1) = p$, $P(X = 0) = 1 - p$, and $Y = \text{Poisson}(p)$, then

$$\sum_n |P(X = n) - P(Y = n)| = |(1 - p) - e^{-p}| + |p - pe^{-p}| + 1 - (1 + p)e^{-p}$$

Since $1 \geq e^{-p} \geq 1 - p$ the right-hand side is

$$e^{-p} - 1 + p + p - pe^{-p} + 1 - e^{-p} - pe^{-p} = 2p(1 - e^{-p}) \leq 2p^2$$

Let $Y_m = \text{Poisson}(p_m)$ be independent. At this point we have shown $\|X_i - Y_i\| \leq p_i^2$. With a little work one can show

$$\|(X_1 + \cdots + X_n) - (Y_1 + \cdots + Y_n)\|$$

$$\leq \|(X_1, \ldots, X_n) - (Y_1, \ldots, Y_n)\| \leq \sum_{m=1}^n \|X_m - Y_m\|$$

and the desired result follows.

Theorem 2.9 is useful because it gives a bound on the difference between the distribution of S_n and the Poisson distribution with mean $\lambda_n = ES_n$. To bound the bound it is useful to note that

$$\sum_{m=1}^n p_m^2 \leq \max_k p_k \left(\sum_{m=1}^n p_m \right)$$

so the approximation is good if $\max_k p_k$ is small. This is similar to the usual heuristic for the normal distribution: the sum is due to small contributions from a large number of variables. However, here small means that it is nonzero with small probability. When a contribution is made it is equal to 1.

The last results handle problem (i). To address the problem of varying arrival rates mentioned in (ii), we generalize the definition.

Nonhomogeneous Poisson Processes We say that $\{N(s), s \geq 0\}$ is a Poisson process with rate $\lambda(r)$ if (i) $N(0) = 0$,

(ii) $N(t)$ has independent increments, and

(iii) $N(t) - N(s)$ is Poisson with mean $\int_s^t \lambda(r) \, dr$.
In this case, the interarrival times are not exponential and they are not independent. To demonstrate the first claim, we note that

$$P(\tau_1 > t) = P(N(t) = 0) = e^{-\int_0^t \lambda(s) \, ds}$$

since $N(t)$ is Poisson with mean $\mu(t) = \int_0^t \lambda(s) \, ds$. Differentiating gives the density function

$$P(\tau_1 = t) = -\frac{d}{dt} P(\tau_1 > t) = \lambda(t) e^{-\int_0^t \lambda(s) \, ds} = \lambda(t) e^{-\mu(t)}$$

Generalizing the last computation shows that the joint distribution

$$f_{\tau_1, \tau_2}(u, v) = \lambda(u) e^{-\mu(u)} \cdot \lambda(v) e^{-(\mu(v)-\mu(u))}$$

Changing variables, $s = u, t = v - u$, the joint density

$$f_{\tau_1, \tau_2}(s, t) = \lambda(s) e^{-\mu(s)} \cdot \lambda(s + t) e^{-(\mu(s+t)-\mu(s))}$$

so τ_1 and τ_2 are not independent when $\lambda(s)$ is not constant.

We will see a concrete example of a nonhomogeneous Poisson process in Example 2.9.

2.3 Compound Poisson Processes

In this section we will embellish our Poisson process by associating an independent and identically distributed (i.i.d.) random variable Y_i with each arrival. By independent we mean that the Y_i are independent of each other and of the Poisson process of arrivals. To explain why we have chosen these assumptions, we begin with two examples for motivation.

Example 2.3. Consider the McDonald’s restaurant on Route 13 in the southern part of Ithaca. By arguments in the last section, it is not unreasonable to assume that between 12:00 and 1:00 cars arrive according to a Poisson process with rate λ. Let Y_i be the number of people in the ith vehicle. There might be some correlation between the number of people in the car and the arrival time, e.g., more families come to eat there at night, but for a first approximation it seems reasonable to assume that the Y_i are i.i.d. and independent of the Poisson process of arrival times.

Example 2.4. Messages arrive at a computer to be transmitted across the Internet. If we imagine a large number of users writing emails on their laptops (or tablets or smart phones), then the arrival times of messages can be modeled by a Poisson process. If we let Y_i be the size of the ith message, then again it is reasonable to assume Y_1, Y_2, \ldots are i.i.d. and independent of the Poisson process of arrival times.
Having introduced the \(Y_i \)'s, it is natural to consider the sum of the \(Y_i \)'s we have seen up to time \(t \):

\[
S(t) = Y_1 + \cdots + Y_{N(t)}
\]

where we set \(S(t) = 0 \) if \(N(t) = 0 \). In Example 2.3, \(S(t) \) gives the number of customers that have arrived up to time \(t \). In Example 2.4, \(S(t) \) represents the total number of bytes in all of the messages up to time \(t \). In either case it is interesting to know the mean and variance of \(S(t) \).

Theorem 2.10. Let \(Y_1, Y_2, \ldots \) be independent and identically distributed, let \(N \) be an independent nonnegative integer valued random variable, and let \(S = Y_1 + \cdots + Y_N \) with \(S = 0 \) when \(N = 0 \).

(i) If \(\mathbb{E}[Y_i], \mathbb{E}[N] < \infty \), then \(\mathbb{E}[S] = \mathbb{E}[N] \cdot \mathbb{E}[Y_i] \).
(ii) If \(\mathbb{E}[Y_i^2], \mathbb{E}[N^2] < \infty \), then \(\text{var}(S) = \mathbb{E}[N] \text{var}(Y_i) + \text{var}(N)(\mathbb{E}[Y_i])^2 \).
(iii) If \(N \) is Poisson(\(\lambda \)), then \(\text{var}(S) = \lambda \mathbb{E}[Y_i]^2 \).

Why is this reasonable? The first of these is natural since if \(N = n \) is nonrandom \(\mathbb{E}[S] = n \mathbb{E}[Y_i] \). (i) then results by setting \(n = \mathbb{E}[N] \). The formula in (ii) is more complicated but it clearly has two of the necessary properties:

If \(N = n \) is nonrandom, \(\text{var}(S) = n \text{var}(Y_i) \).

If \(Y_i = c \) is nonrandom \(\text{var}(S) = c^2 \text{var}(N) \).

Combining these two observations, we see that \(\mathbb{E}[N] \text{var}(Y_i) \) is the contribution to the variance from the variability of the \(Y_i \), while \(\text{var}(N)(\mathbb{E}[Y_i])^2 \) is the contribution from the variability of \(N \).

Proof. When \(N = n \), \(S = X_1 + \cdots + X_n \) has \(\mathbb{E}[S] = n \mathbb{E}[Y_i] \). Breaking things down according to the value of \(N \),

\[
\mathbb{E}[S] = \sum_{n=0}^{\infty} \mathbb{E}([S|N = n]) \cdot P(N = n)
= \sum_{n=0}^{\infty} n \mathbb{E}[Y_i] \cdot P(N = n) = \mathbb{E}[N] \cdot \mathbb{E}[Y_i]
\]

For the second formula we note that when \(N = n \), \(S = X_1 + \cdots + X_n \) has \(\text{var}(S) = n \text{var}(Y_i) \) and hence,

\[
\mathbb{E}([S^2|N = n]) = n \text{var}(Y_i) + (n \mathbb{E}[Y_i])^2
\]

Computing as before we get

\[
\mathbb{E}[S^2] = \sum_{n=0}^{\infty} \mathbb{E}([S^2|N = n]) \cdot P(N = n)
\]
\[= \sum_{n=0}^{\infty} \{n \cdot \text{var}\ (Y_i) + n^2 (EY_i)^2\} \cdot P(N = n) \]

\[= (EN) \cdot \text{var}\ (Y_i) + EN^2 \cdot (EY_i)^2 \]

To compute the variance now, we observe that

\[\text{var}\ (S) = ES^2 - (ES)^2 \]

\[= (EN) \cdot \text{var}\ (Y_i) + EN^2 \cdot (EY_i)^2 - (EN \cdot EY_i)^2 \]

\[= (EN) \cdot \text{var}\ (Y_i) + \text{var}\ (N) \cdot (EY_i)^2 \]

where in the last step we have used \(\text{var}\ (N) = EN^2 - (EN)^2 \) to combine the second and third terms.

For part (iii), we note that in the special case of the Poisson, we have \(EN = \lambda \) and \(\text{var}\ (N) = \lambda \), so the result follows from \(\text{var}\ (Y_i) + (EY_i)^2 = EY_i^2 \). \(\square \)

For a concrete example of the use of Theorem 2.10 consider

Example 2.5. Suppose that the number of customers at a liquor store in a day has a Poisson distribution with mean 81 and that each customer spends an average of $8 with a standard deviation of $6. It follows from (i) in Theorem 2.10 that the mean revenue for the day is $81 \cdot $8 = $648. Using (iii), we see that the variance of the total revenue is

\[81 \cdot \{(6)^2 + (8)^2\} = 8100 \]

Taking square roots we see that the standard deviation of the revenue is $90 compared with a mean of $648.

2.4 Transformations

2.4.1 Thinning

In the previous section, we added up the \(Y_i \)'s associated with the arrivals in our Poisson process to see how many customers, etc., we had accumulated by time \(t \). In this section we will use the \(Y_i \) to split the Poisson process into several. Let \(N_j(t) \) be the number of \(i \leq N(t) \) with \(Y_i = j \). In Example 2.3, where \(Y_i \) is the number of people in the \(i \)th car, \(N_j(t) \) will be the number of cars that have arrived by time \(t \) with exactly \(j \) people. The somewhat remarkable fact is

Theorem 2.11. \(N_j(t) \) are independent rate \(\lambda P(Y_i = j) \) Poisson processes.
Why is this remarkable? There are two “surprises” here: the resulting processes are Poisson and they are independent. To drive the point home consider a Poisson process with rate 10 per hour, and then flip coins to determine whether the arriving customers are male or female. One might think that seeing 40 men arrive in one hour would be indicative of a large volume of business and hence a larger than normal number of women, but Theorem 2.11 tells us that the number of men and the number of women that arrive per hour are independent.

Proof. To begin we suppose that \(P(Y_i = 1) = p \) and \(P(Y_i = 2) = 1 - p \), so there are only two Poisson processes to consider: \(N_1(t) \) and \(N_2(t) \). It should be clear that the independent increments property of the Poisson process implies that the pairs of increments

\[
(N_1(t_i) - N_1(t_{i-1}), N_2(t_i) - N_2(t_{i-1})), \quad 1 \leq i \leq n
\]

are independent of each other. Since \(N_1(0) = N_2(0) = 0 \) by definition, it only remains to check that the components \(X_i = N_i(t + s) - N_i(s) \) are independent and have the right Poisson distributions. To do this, we note that if \(X_1 = j \) and \(X_2 = k \), then there must have been \(j + k \) arrivals between \(s \) and \(s + t \), of which were assigned 1’s and \(k \) of which were assigned 2’s, so

\[
P(X_1 = j, X_2 = k) = e^{-\lambda t} \frac{(\lambda t)^{j+k}}{(j+k)!} \cdot \frac{(j+k)!}{j!k!} \cdot p^j (1-p)^k
\]

\[
= e^{-\lambda pt} \frac{(\lambda pt)^j}{j!} - e^{-\lambda (1-p)t} \frac{(\lambda (1-p)t)^k}{k!}
\]

(2.13)

so \(X_1 = \text{Poisson}(\lambda pt) \) and \(X_2 = \text{Poisson}(\lambda (1-p)t) \). For the general case, we use the multinomial to conclude that if \(p_j = P(Y_i = j) \) for \(1 \leq j \leq m \) then

\[
P(X_1 = k_1, \ldots, X_m = k_m) = e^{-\lambda t} \frac{(\lambda t)^{k_1+\cdots+k_m}}{(k_1 + \cdots + k_m)!} \cdot \frac{(k_1 + \cdots + k_m)!}{k_1! \cdots k_m!} \cdot p_{1}^{k_1} \cdots p_{m}^{k_m}
\]

\[
= \prod_{j=1}^{m} e^{-\lambda p_j t} \frac{(\lambda p_j)^{k_j}}{k_j!}
\]

which proves the desired result. \(\square \)

Example 2.6. Ellen catches fish at times of a Poisson process with rate 2 per hour. 40% of the fish are salmon, while 60% of the fish are trout. What is the probability she will catch exactly 1 salmon and 2 trout if she fishes for 2.5 hours? The total number of fish she catches in 2.5 hours is Poisson with mean 5, so the number of salmon and the number of trout are independent Poissons with means 2 and 3. Thus the probability of interest is

\[
e^{-2} \frac{2^1}{1!} \cdot e^{-3} \frac{3^2}{2!}
\]
Example 2.7. Two copy editors read a 300-page manuscript. The first found 100 typos, the second found 120, and their lists contain 80 errors in common. Suppose that the author’s typos follow a Poisson process with some unknown rate λ per page, while the two copy editors catch errors with unknown probabilities of success p_1 and p_2. The goal in this problem is to find an estimate of λ. We want to estimate λ, p_1, p_2, and the number of undiscovered typos.

Let X_0 be the number of typos that neither found. Let X_1 and X_2 be the number of typos found only by 1 or only by 2, and let X_3 be the number of typos found by both. If we let $\mu = 300\lambda$, the X_i are independent Poisson with means $\mu(1 - p_1)(1 - p_2)$, $\mu p_1(1 - p_2)$, $\mu (1 - p_1)p_2$, $\mu p_1 p_2$.

In our example $X_1 = 20$, $X_2 = 40$ and $X_3 = 80$. Since $EX_3/E(X_2 + X_3) = p_1$, solving gives $p_1 = 2/3$, $EX_3/E(X_1 + X_3) = p_2$ so $p_2 = 0.8$. Since $EX_0/EX_1 = (1 - p_1)/p_1 = EX_2/EX_3$ we guess that there are $20 \cdot 40/80 = 10$ typos remaining. Alternatively one can estimate $\mu = 80/p_1 p_2 = 150$, i.e., $\lambda = 1/2$ and note that $X_1 + X_2 + X_3 = 140$ have been found.

Example 2.8. This example illustrates Poissonization—the fact that some combinatorial probability problems become much easier when the number of objects is not fixed but has a Poisson distribution. Suppose that a Poisson number of Duke students with mean 2263 will show up to watch the next women’s basketball game. What is the probability that for all of the 365 days there is at least one person in the crowd who has that birthday. (Pretend February 29th does not exist.)

By thinning if we let N_j be the number of people who have birthdays on the jth day of the year then the N_j are independent Poisson mean $2263/365 = 6.2$. The probability that all of $N_j > 0$ is

$$(1 - e^{-6.2})^{365} = 0.4764$$

The thinning results generalize easily to the nonhomogeneous case:

Theorem 2.12. Suppose that in a Poisson process with rate λ, we keep a point that lands at s with probability $p(s)$. Then the result is a nonhomogeneous Poisson process with rate $\lambda p(s)$.

For an application of this consider

Example 2.9 ($M/G/\infty$ Queue). As one walks around the Duke campus it seems that every student is talking on their smartphone. The argument for arrivals at the ATM implies that the beginnings of calls follow a Poisson process. As for the calls themselves, while many people on the telephone show a lack of memory, there is no reason to suppose that the duration of a call has an exponential distribution, so we use a general distribution function G with $G(0) = 0$ and mean μ. Suppose that the
system starts empty at time 0. The probability a call started at \(s \) has ended by time \(t \) is \(G(t - s) \), so using Theorem 2.12 the number of calls still in progress at time \(t \) is Poisson with mean

\[
\int_{s=0}^{t} \lambda (1 - G(t - s)) \, ds = \lambda \int_{r=0}^{t} (1 - G(r)) \, dr
\]

Letting \(t \to \infty \) we see that

Theorem 2.13. In the long run the number of calls in the system will be Poisson with mean

\[
\lambda \int_{r=0}^{\infty} (1 - G(r)) \, dr = \lambda \mu
\]

where in the second equality we have used (A.22). That is, the mean number in the system is the rate at which calls enter times their average duration. In the argument above we supposed that the system starts empty. Since the number of initial calls still in the system at time \(t \) decreases to 0 as \(t \to \infty \), the limiting result is true for any initial number of calls \(X_0 \).

Example 2.10. Customers arrive at a sporting goods store at rate 10 per hour. 60\% of the customers are men and 40\% are women. Mean stay in the store for an amount of time that is exponential with mean 1/2 hour. Women for an amount of time that is uniformly distributed. What is the probability in equilibrium that there are four men and two women in the store?

By Poisson thinning the arrivals of men and women are independent Poisson process with rate 6 and 4. Since the mean time in the store is 1/2 for men and 1/4 for women, by Theorem 2.13 the number of men \(M \) and women \(W \) in equilibrium are independent Poissons with means 3 and 1. Thus

\[
P(M = 4, W = 2) = e^{-3} \frac{3^4}{4!} \cdot e^{-1} \frac{1^2}{2!}
\]

Example 2.11. People arrive at a puzzle exhibit according to a Poisson process with rate 2 per minute. The exhibit has enough copies of the puzzle so everyone at the exhibit can have one to play with. Suppose the puzzle takes an amount of time to solve that is uniform on \((0, 10)\) minutes. (a) What is the distribution of the number of people working on the puzzle in equilibrium? (b) What is the probability that there are three people at the exhibit working on puzzles, one that has been working more than four minutes, and two less than four minutes?

(a) The probability a customer who arrived \(x \) minutes ago is still working on the puzzle is \(x/10 \), so by Poisson thinning the number is Poisson with mean

\[
2 \int_{0}^{10} \frac{x}{10} \, dx = 10.
\]

(b) The number that has been working more than four minutes
is Poisson with mean $2 \int_0^6 x/10 \, dx = 36/10 = 3.6$, so the number less than four minutes is Poisson(6.4) and the answer is

$$e^{-3.6} \cdot 3.6 \cdot e^{-6.4} \cdot \frac{(6.4)^2}{2!}$$

2.4.2 Superposition

Taking one Poisson process and splitting it into two or more by using an i.i.d. sequence Y_i is called **thinning**. Going in the other direction and adding up a lot of independent processes is called **superposition**. Since a Poisson process can be split into independent Poisson processes, it should not be too surprising that when the independent Poisson processes are put together, the sum is Poisson with a rate equal to the sum of the rates.

Theorem 2.14. Suppose $N_1(t), \ldots, N_k(t)$ are independent Poisson processes with rates $\lambda_1, \ldots, \lambda_k$, then $N_1(t) + \cdots + N_k(t)$ is a Poisson process with rate $\lambda_1 + \cdots + \lambda_k$.

Proof. It is clear that the sum has independent increments and $N_1(0) + N_2(0) = 0$. The fact that the increments have the right Poisson distribution follows from Theorem 2.4. \(\square\)

We will see in the next chapter that the ideas of compounding and thinning are very useful in computer simulations of continuous time Markov chains. For the moment we will illustrate their use in computing the outcome of races between Poisson processes.

Example 2.12 (A Poisson Race). Given a Poisson process of red arrivals with rate λ and an independent Poisson process of green arrivals with rate μ, what is the probability that we will get 6 red arrivals before a total of 4 green ones?

Solution. The first step is to note that the event in question is equivalent to having at least 6 red arrivals in the first 9. If this happens, then we have at most 3 green arrivals before the 6th red one. On the other hand, if there are 5 or fewer red arrivals in the first 9, then we have had at least 4 red arrivals and at most 5 green.

Viewing the red and green Poisson processes as being constructed by starting with one rate $\lambda + \mu$ Poisson process and flipping coins with probability $p = \lambda/(\lambda + \mu)$ to decide the color, we see that the probability of interest is

$$\sum_{k=6}^9 \binom{9}{k} p^k (1-p)^{9-k}$$

If we suppose for simplicity that $\lambda = \mu$ so $p = 1/2$, this expression becomes

$$\frac{1}{512} \cdot \sum_{k=6}^9 \binom{9}{k} = \frac{1 + 9 + (9 \cdot 8)/2 + (9 \cdot 8 \cdot 7)/3!}{512} = \frac{140}{512} = 0.273$$
2.4.3 Conditioning

Let \(T_1, T_2, T_3, \ldots \) be the arrival times of a Poisson process with rate \(\lambda \), let \(U_1, U_2, \ldots, U_n \) be independent and uniformly distributed on \([0, t]\), and let \(V_1 < \ldots < V_n \) be the \(U_i \) rearranged into increasing order. This section is devoted to the proof of the following remarkable fact.

Theorem 2.15. If we condition on \(N(t) = n \), then the vector \((T_1, T_2, \ldots, T_n) \) has the same distribution as \((V_1, V_2, \ldots, V_n) \) and hence the set of arrival times \(\{T_1, T_2, \ldots, T_n\} \) has the same distribution as \(\{U_1, U_2, \ldots, U_n\} \).

Why is this true? We begin by finding the joint density function of \((T_1, T_2, T_3) \) given that there were 3 arrivals before time \(t \). The probability is 0 unless \(0 < v_1 < v_2 < v_3 < t \). To compute the answer in this case, we note that \(P(N(t) = 3) = e^{-3\lambda t} / 3! \), and in order to have \(T_1 = t_1, T_2 = t_2, T_3 = t_3 \), \(N(t) = 4 \) we must have \(t_1 = t_1, t_2 = t_2 - t_1, t_3 = t_3 - t_2 \), and \(t > t - t_3 \), so the desired conditional distribution is

\[
\frac{\lambda e^{-\lambda t_1} \cdot \lambda e^{-\lambda (t_2-t_1)} \cdot \lambda e^{-\lambda (t_3-t_2)} \cdot e^{-\lambda (t-t_3)}}{e^{-3\lambda t} / 3!} = \frac{\lambda^3 e^{-\lambda t}}{e^{-3\lambda t} / 3!} = \frac{3!}{t^3}
\]

Note that the answer does not depend on the values of \(v_1, v_2, v_3 \) (as long as \(0 < v_1 < v_2 < v_3 < t \)), so the resulting conditional distribution is uniform over \(\{(v_1, v_2, v_3) : 0 < v_1 < v_2 < v_3 < t\} \)

This set has volume \(t^3 / 3! \) since \(\{(v_1, v_2, v_3) : 0 < v_1, v_2, v_3 < t\} \) has volume \(t^3 \) and \(v_1 < v_2 < v_3 \) is one of \(3! \) possible orderings.

Generalizing from the concrete example it is easy to see that the joint density function of \((T_1, T_2, \ldots, T_n) \) given that there were \(n \) arrivals before time \(t \) is \(n! / t^n \) for all times \(0 < t_1 < \ldots < t_n < t \), which is the joint distribution of \((V_1, \ldots, V_n) \). The second fact follows easily from this, since there are \(n! \) sets \(\{T_1, T_2, \ldots, T_n\} \) or \(\{U_1, U_2, \ldots, U_n\} \) for each ordered vector \((T_1, T_2, \ldots, T_n) \) or \((V_1, V_2, \ldots, V_n) \).

Theorem 2.15 implies that if we condition on having \(n \) arrivals at time \(t \), then the locations of the arrivals are the same as the location of \(n \) points thrown uniformly on \([0, t]\). From the last observation we immediately get

Theorem 2.16. If \(s < t \) and \(0 \leq m \leq n \), then

\[
P(N(s) = m | N(t) = n) = \binom{n}{m} \left(\frac{s}{t} \right)^m \left(1 - \frac{s}{t} \right)^{n-m}
\]

That is, the conditional distribution of \(N(s) \) given \(N(t) = n \) is binomial\((n, s/t)\).

Note that the answer does not depend on \(\lambda \).
Proof. The number of arrivals by time \(s \) is the same as the number of \(U_i < s \). The events \(\{ U_i < s \} \) these events are independent and have probability \(s/t \), so the number of \(U_i < s \) will be binomial(\(n, s/t \)).

One can also prove this directly.

Second Proof. By the definitions of conditional probability and of the Poisson process.

\[
P(N(s) = m|N(t) = n) = \frac{P(N(s) = m)P(N(t) - N(s) = n - m)}{P(N(t) = n)} = e^{-\lambda t}(\lambda t)^{n-m}/m! \cdot e^{-\lambda (t-s)}(\lambda (t - s))^{(n - m)}/(n - m)!.
\]

Cancelling out the terms involving \(\lambda \) and rearranging the above

\[
= \frac{n!}{m!(n-m)!} \left(\frac{s}{t} \right)^m \left(\frac{t-s}{t} \right)^{n-m}
\]

which gives the desired result.

Example 2.13. For a concrete example, suppose \(N(3) = 4 \).

\[
P(N(1) = 1|N(3) = 4) = 4 \cdot (1/3)^1(2/3)^3 = 32/81
\]

Similar calculations give the entire conditional distribution

\[
\begin{array}{cccccc}
k & 0 & 1 & 2 & 3 & 4 \\
P(N(1) = k|N(3) = 4) & 16/81 & 32/81 & 24/81 & 8/81 & 1/81 \\
\end{array}
\]

Our final example provides a review of ideas from this section.

Example 2.14. Trucks and cars on highway US 421 are Poisson processes with rate 40 and 100 per hour, respectively. 1/8 of the trucks and 1/10 of the cars get off on exit 257 to go to the Bojangle’s in Yadkinville. (a) Find the probability that exactly six trucks arrive at Bojangle’s between noon and 1 p.m. (b) Given that there were six truck arrivals at Bojangle’s between noon and 1 p.m., what is the probability that exactly two arrived between 12:20 and 12:40? (c) If we start watching at noon, what is the probability that four cars arrive before two trucks do. (d) Suppose that all trucks have 1 passenger while 30 % of the cars have 1 passenger, 50 % have 2, and 20 % have 4. Find the mean and standard deviation of the number of customers that arrive at Bojangles’ in one hour.

(a) By thinning trucks are Poisson with rate 5, so \(e^{-5s}6!/6! = 0.1462 \).
(b) By conditioning the probability is \(C_{6,2}(1/3)^2(2/3)^4 = 0.3292 \).
(c) For four cars to arrive before two trucks do, at least four of the first five arrivals must be cars. Trucks and cars are independent Poissons with rate 5 and 10 so the answer is
\[
(2/3)^5 + 5(2/3)^4(1/3) = (7/3)(2/3)^4 = 0.4069
\]

(d) The mean number of customers is
\[
5 \cdot 1 + 10 \cdot [(0.3)1 + (0.5)2 + (0.2)4] = 26
\]

The variance is
\[
5 \cdot 1 + 10 \cdot [(0.3)1 + (0.5)4 + (0.2)16] = 55
\]
so the standard deviation is \(\sqrt{55} = 7.46\).

2.5 Chapter Summary

A random variable \(T\) is said to have an **exponential distribution with rate** \(\lambda\), or \(T = \text{exponential}(\lambda)\), if \(P(T \leq t) = 1 - e^{-\lambda t}\) for all \(t \geq 0\). The mean is \(1/\lambda\), variance \(1/\lambda^2\). The density function is \(f_T(t) = \lambda e^{-\lambda t}\). The sum of \(n\) independent exponentials has the gamma\((n, \lambda)\) density
\[
\lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}
\]

Lack of Memory Property “if we’ve been waiting for \(t\) units of time then the probability we must wait \(s\) more units of time is the same as if we haven’t waited at all.”

\[
P(T > t+s|T > t) = P(T > s)
\]

Exponential Races Let \(T_1, \ldots, T_n\) are independent, \(T_i = \text{exponential}(\lambda_i)\), and \(S = \min(T_1, \ldots, T_n)\). Then \(S = \text{exponential}(\lambda_1 + \cdots + \lambda_n)\)
\[
P(T_i = \min(T_1, \ldots, T_n)) = \frac{\lambda_i}{\lambda_1 + \cdots + \lambda_n}
\]

\[\max\{S, T\} = S + T - \min\{S, T\}\] so taking expected value if \(S = \text{exponential}(\mu)\) and \(T = \text{exponential}(\lambda)\) then
\[
E \max\{S, T\} = \frac{1}{\mu} + \frac{1}{\lambda} - \frac{1}{\mu + \lambda}
\]
\[
= \frac{1}{\mu + \lambda} + \frac{\lambda}{\lambda + \mu} \cdot \frac{1}{\mu} + \frac{\mu}{\lambda + \mu} \cdot \frac{1}{\lambda}
\]
Poisson(μ) Distribution \(P(X = n) = e^{-\mu} \frac{\mu^n}{n!} \). The mean and variance of \(X \) are \(\mu \).

Poisson Process Let \(t_1, t_2, \ldots \) be independent exponential(λ) random variables. Let \(T_n = t_1 + \ldots + t_n \) be the time of the \(n \)th arrival. Let \(N(t) = \max\{n : T_n \leq t\} \) be the number of arrivals by time \(t \), which is Poisson(λt). \(N(t) \) has independent increments: if \(t_0 < t_1 < \ldots < t_n \), then \(N(t_1) - N(t_0), N(t_2) - N(t_1), \ldots, N(t_n) - N(t_{n-1}) \) are independent.

Thinning Suppose we embellish our Poisson process by associating to each arrival an independent and identically distributed (i.i.d.) positive integer random variable \(Y_i \). If we let \(p_k = P(Y_i = k) \) and let \(N_k(t) \) be the number of \(i \leq N(t) \) with \(Y_i = k \), then \(N_1(t), N_2(t), \ldots \) are independent Poisson processes and \(N_k(t) \) has rate \(\lambda p_k \).

Random Sums Let \(Y_1, Y_2, \ldots \) be i.i.d., let \(N \) be an independent nonnegative integer valued random variable, and let \(S = Y_1 + \ldots + Y_N \) with \(S = 0 \) when \(N = 0 \).

\begin{align*}
&\text{(i) If } E|Y_i|, EN < \infty, \text{ then } ES = EN \cdot EY_i. \\
&\text{(ii) If } EY_i^2, EN^2 < \infty, \text{ then } \text{var}(S) = EN \cdot \text{var}(Y_i) + \text{var}(N)(EY_i)^2. \\
&\text{(iii) If } N \text{ is Poisson(λ)}, \text{ var}(S) = \lambda E(Y_i^2)
\end{align*}

Superposition If \(N_1(t) \) and \(N_2(t) \) are independent Poisson processes with rates \(\lambda_1 \) and \(\lambda_2 \), then \(N_1(t) + N_2(t) \) is Poisson rate \(\lambda_1 + \lambda_2 \).

Conditioning Let \(T_1, T_2, T_3, \ldots \) be the arrival times of a Poisson process with rate \(\lambda \), and let \(U_1, U_2, \ldots, U_n \) be independent and uniformly distributed on \([0,t]\). If we condition on \(N(t) = n \), then the set \(\{T_1, T_2, \ldots, T_n\} \) has the same distribution as \(\{U_1, U_2, \ldots, U_n\} \).

2.6 Exercises

Exponential Distribution

2.1. Suppose that the time to repair a machine is exponentially distributed random variable with mean 2. (a) What is the probability the repair takes more than two hours. (b) What is the probability that the repair takes more than five hours given that it takes more than three hours.

2.2. The lifetime of a radio is exponentially distributed with mean 5 years. If Ted buys a 7-year-old radio, what is the probability it will be working 3 years later?

2.3. A doctor has appointments at 9 and 9:30. The amount of time each appointment lasts is exponential with mean 30. What is the expected amount of time after 9:30 until the second patient has completed his appointment?

2.4. Three people are fishing and each catches fish at rate 2 per hour. How long do we have to wait until everyone has caught at least one fish?
2.5. Ilan and Justin are competing in a math competition. They work independently and each has the same two problems to solve. The two problems take an exponentially distributed amount of time with mean 20 and 30 minutes respectively (or rates 3 and 2 if written in terms of hours). (a) What is the probability Ilan finishes both problems before Justin has completed the first one. (b) What is the expected time until both are done?

2.6. In a hardware store you must first go to server 1 to get your goods and then go to a server 2 to pay for them. Suppose that the times for the two activities are exponentially distributed with means six and three minutes. Compute the average amount of time it takes Bob to get his goods and pay if when he comes in there is one customer named Al with server 1 and no one at server 2.

2.7. Consider a bank with two tellers. Three people, Anne, Betty, and Carol enter the bank at almost the same time and in that order. Anne and Betty go directly into service while Carol waits for the first available teller. Suppose that the service times for two servers are exponentially distributed with mean three and six minutes (or they have rates of 20 and 10 per hour). (a) What is the expected total amount of time for Carol to complete her businesses? (b) What is the expected total time until the last of the three customers leaves? (c) What is the probability for Anne, Betty, and Carol to be the last one to leave?

2.8. A flashlight needs two batteries to be operational. You start with four batteries numbered 1–4. Whenever a battery fails it is replaced by the lowest-numbered working battery. Suppose that battery life is exponential with mean 100 hours. Let \(T \) be the time at which there is one working battery left and \(N \) be the number of the one battery that is still good. (a) Find \(E(T) \). (b) Find the distribution of \(N \).

2.9. Excited by the recent warm weather Jill and Kelly are doing spring cleaning at their apartment. Jill takes an exponentially distributed amount of time with mean 30 minutes to clean the kitchen. Kelly takes an exponentially distributed amount of time with mean 40 minutes to clean the bathroom. The first one to complete their task will go outside and start raking leaves, a task that takes an exponentially distributed amount of time with a mean of one hour. When the second person is done inside, they will help the other and raking will be done at rate 2. (Of course the other person may already be done raking in which case the chores are done.) What is the expected time until the chores are all done?

2.10. Ron, Sue, and Ted arrive at the beginning of a professor’s office hours. The amount of time they will stay is exponentially distributed with means of 1, 1/2, and 1/3 hour. (a) What is the expected time until only one student remains? (b) For each student find the probability they are the last student left. (c) What is the expected time until all three students are gone?
Poisson Approximation to Binomial

2.11. Compare the Poisson approximation with the exact binomial probabilities of 1 success when \(n = 20, \ p = 0.1 \).

2.12. Compare the Poisson approximation with the exact binomial probabilities of no success when (a) \(n = 10, \ p = 0.1 \), (b) \(n = 50, \ p = 0.02 \).

2.13. The probability of a three of a kind in poker is approximately 1/50. Use the Poisson approximation to estimate the probability you will get at least one three of a kind if you play 20 hands of poker.

2.14. Suppose 1% of a certain brand of Christmas lights is defective. Use the Poisson approximation to compute the probability that in a box of 25 there will be at most one defective bulb.

Poisson Processes: Basic Properties

2.15. Suppose \(N(t) \) is a Poisson process with rate 3. Let \(T_n \) denote the time of the \(n \)th arrival. Find (a) \(E(T_{12}) \), (b) \(E(T_{12} | N(2) = 5) \), (c) \(E(N(5) | N(2) = 5) \).

2.16. Customers arrive at a shipping office at times of a Poisson process with rate 3 per hour. (a) The office was supposed to open at 8 a.m. but the clerk Oscar overslept and came in at 10 a.m. What is the probability that no customers came in the two-hour period? (b) What is the distribution of the amount of time Oscar has to wait until his first customer arrives?

2.17. Suppose that the number of calls per hour to an answering service follows a Poisson process with rate 4. (a) What is the probability that fewer (i.e., <) than 2 calls came in the first hour? (b) Suppose that 6 calls arrive in the first hour, what is the probability there will be < 2 in the second hour. (c) Suppose that the operator gets to take a break after she has answered 10 calls. How long are her average work periods?

2.18. Traffic on Rosedale Road in Princeton, NJ, follows a Poisson process with rate 6 cars per minute. A deer runs out of the woods and tries to cross the road. If there is a car passing in the next five seconds, then there will be a collision. (a) Find the probability of a collision. (b) What is the chance of a collision if the deer only needs two seconds to cross the road.

2.19. Calls to the Dryden fire department arrive according to a Poisson process with rate 0.5 per hour. Suppose that the time required to respond to a call, return to the station, and get ready to respond to the next call is uniformly distributed between 1/2 and 1 hour. If a new call comes before the Dryden fire department is ready to respond, the Ithaca fire department is asked to respond. Suppose that the Dryden
2.6 Exercises

fire department is ready to respond now. Find the probability distribution for the number of calls they will handle before they have to ask for help from the Ithaca fire department.

2.20. A math professor waits at the bus stop at the Mittag-Leffler Institute in the suburbs of Stockholm, Sweden. Since he has forgotten to find out about the bus schedule, his waiting time until the next bus is uniform on (0,1). Cars drive by the bus stop at rate 6 per hour. Each will take him into town with probability 1/3. What is the probability he will end up riding the bus?

2.21. The number of hours between successive trains is T which is uniformly distributed between 1 and 2. Passengers arrive at the station according to a Poisson process with rate 24 per hour. Let X denote the number of people who get on a train. Find (a) EX, (b) $\text{var}(X)$.

2.22. Let T be exponentially distributed with rate λ. (a) Use the definition of conditional expectation to compute $E(T|T < c)$. (b) Determine $E(T|T < c)$ from the identity

$$ET = P(T < c)E(T|T < c) + P(T > c)E(T|T > c)$$

2.23. When did the chicken cross the road? Suppose that traffic on a road follows a Poisson process with rate λ cars per minute. A chicken needs a gap of length at least c minutes in the traffic to cross the road. To compute the time the chicken will have to wait to cross the road, let t_1, t_2, t_3, \ldots be the interarrival times for the cars and let $J = \min\{j : t_j > c\}.$ If $T_n = t_1 + \cdots + t_n$, then the chicken will start to cross the road at time T_{J-1} and complete his journey at time $T_{J-1} + c$. Use the previous exercise to show $E(T_{J-1} + c) = (e^{\lambda c} - 1)/\lambda$.

Random Sums

2.24. Edwin catches trout at times of a Poisson process with rate 3 per hour. Suppose that the trout weigh an average of four pounds with a standard deviation of two pounds. Find the mean and standard deviation of the total weight of fish he catches in two hours.

2.25. An insurance company pays out claims at times of a Poisson process with rate 4 per week. Writing K as shorthand for “thousands of dollars,” suppose that the mean payment is 10K and the standard deviation is 6K. Find the mean and standard deviation of the total payments for 4 weeks.

2.26. Customers arrive at an automated teller machine at the times of a Poisson process with rate of 10 per hour. Suppose that the amount of money withdrawn on each transaction has a mean of $30 and a standard deviation of $20. Find the mean and standard deviation of the total withdrawals in eight hours.
Thinning and Conditioning

2.27. Rock concert tickets are sold at a ticket counter. Females and males arrive at times of independent Poisson processes with rates 30 and 20 customers per hour. (a) What is the probability the first three customers are female? (b) If exactly two customers arrived in the first five minutes, what is the probability both arrived in the first three minutes. (c) Suppose that customers regardless of sex buy one ticket with probability 1/2, two tickets with probability 2/5, and three tickets with probability 1/10. Let N_i be the number of customers that buy i tickets in the first hour. Find the joint distribution of (N_1, N_2, N_3).

2.28. A light bulb has a lifetime that is exponential with a mean of 200 days. When it burns out a janitor replaces it immediately. In addition there is a handyman who comes at times of a Poisson process at rate .01 and replaces the bulb as “preventive maintenance.” (a) How often is the bulb replaced? (b) In the long run what fraction of the replacements are due to failure?

2.29. Calls originate from Dryden according to a rate 12 Poisson process. 3/4 are local and 1/4 are long distance. Local calls last an average of ten minutes, while long distance calls last an average of five minutes. Let M be the number of local calls and N the number of long distance calls in equilibrium. Find the distribution of (M, N).

2.30. Suppose the number of calls per hour to an answering service follows a Poisson process with rate 4. Suppose that 3/4’s of the calls are made by men, 1/4 by women, and the sex of the caller is independent of the time of the call. (a) What is the probability that in one hour exactly two men and three women will call the answering service? (b) What is the probability 3 men will make phone calls before three women do?

2.31. Suppose $N(t)$ is a Poisson process with rate 2. Compute the conditional probabilities (a) $P(N(3) = 4|N(1) = 1)$, (b) $P(N(1) = 1|N(3) = 4)$.

2.32. For a Poisson process $N(t)$ with arrival rate 2 compute: (a) $P(N(2) = 5)$, (b) $P(N(5) = 8|N(2) = 3)$, (c) $P(N(2) = 3|N(5) = 8)$.

2.33. Customers arrive at a bank according to a Poisson process with rate 10 per hour. Given that two customers arrived in the first five minutes, what is the probability that (a) both arrived in the first two minutes. (b) at least one arrived in the first two minutes.

2.34. Wayne Gretsky scored a Poisson mean 6 number of points per game. 60% of these were goals and 40% were assists (each is worth one point). Suppose he is paid a bonus of 3K for a goal and 1K for an assist. (a) Find the mean and standard deviation for the total revenue he earns per game. (b) What is the probability that he has four goals and two assists in one game? (c) Conditional on the fact that he had six points in a game, what is the probability he had 4 in the first half?
2.35. Hockey teams 1 and 2 score goals at times of Poisson processes with rates 1 and 2. Suppose that $N_1(0) = 3$ and $N_2(0) = 1$. (a) What is the probability that $N_1(t)$ will reach 5 before $N_2(t)$ does? (b) Answer part (a) for Poisson processes with rates λ_1 and λ_2.

2.36. Traffic on Snyder Hill Road in Ithaca, NY, follows a Poisson process with rate $2/3$'s of a vehicle per minute. 10% of the vehicles are trucks, the other 90% are cars. (a) What is the probability at least one truck passes in an hour? (b) Given that ten trucks have passed by in an hour, what is the expected number of vehicles that have passed by. (c) Given that 50 vehicles have passed by in a hour, what is the probability there were exactly 5 trucks and 45 cars.

2.37. As a community service members of the Mu Alpha Theta fraternity are going to pick up cans from along a roadway. A Poisson mean 60 members show up for work. 2/3 of the workers are enthusiastic and will pick up a mean of ten cans with a standard deviation of 5. 1/3 of the workers are lazy and will only pick up an average of three cans with a standard deviation of 2. Find the mean and standard deviation of the number of cans collected.

2.38. Suppose that Virginia scores touchdowns at rate λ_7 and field goals at rate λ_3 while Duke scores touchdowns at rate μ_7 and field goals at rate μ_3. The subscripts indicate the number of points the team receives for each type of event. The final score in the Virginia-Duke game in 2015 was 42–34, i.e., Virginia scored six touchdowns while Duke scored four touchdowns and two field goals. Given this outcome what is the probability that the score at halftime was 28–13, i.e., four touchdowns for Virginia, versus one touchdown and two field goals for Duke. Write your answer as a decimal, e.g., 0.12345.

2.39. A Philadelphia taxi driver gets new customers at rate 1/5 per minute. With probability 1/3 the person wants to go to the airport, a 20-minute trip. After waiting in a line of cabs at the airport for an average of 35 minutes, he gets another fare and spends 20 minutes driving back to drop that person off. Each trip to or from the airport costs the customer a standard $28 charge (ignore tipping). While in the city fares with probability 2/3 want a short trip that lasts an amount of time uniformly distributed on $[2, 10]$ minutes and the cab driver earns an average of $1.33 a minute (i.e., 4/3 of a dollar). (a) In the long run how much money does he make per hour? (b) What fraction of time does he spend going to and from the airport (inducing the time spent in line there)?

2.40. People arrive at the Durham Farmer’s market at rate 15 per hour. 4/5’s are vegetarians, and 1/5 are meat eaters. Vegetarians spend an average of $7 with a standard deviation of 3. Meat eaters spend an average of $15 with a standard deviation of 8. (a) Compute the probability that in the first 20 minutes exactly three vegetarians and two meat eaters arrive. You do not have to simplify your answer. (b) Find the mean and standard deviation of the amount of money spent during the four hours the market is open.
2.41. Vehicles carrying **Occupy Durham** protesters arrive at rate 30 per hour.

- 50% are bicycles carrying one person
- 30% are BMW’s carrying two people
- 20% are Prius’s carrying four happy carpoolers

(a) What is the probability exactly 4 Prius’s arrive between 12 and 12:30? (b) Find the mean and standard deviation of the number of people which arrive in that half hour.

2.42. People arrive at the Southpoint Mall at times of a Poisson process with rate 96 per hour. 1/3 of the shoppers are men and 2/3 are women. (a) Women shop for an amount of time that is exponentially distributed with mean three hours. Men shop for a time that is uniformly distributed on \([0, 1]\) hour. Let \((M_t, W_t)\) be the number of men and women at time \(t\). What is the equilibrium distribution for \((M_t, W_t)\).

(b) Women spend an average of $150 with a standard deviation of $80. Find the mean and variance of the amount of money spent by women who arrived between 9 a.m. and 10 a.m.

2.43. A policewoman on the evening shift writes a Poisson mean 6 number of tickets per hour. 2/3’s of these are for speeding and cost $100. 1/3’s of these are for DWI and cost $400. (a) Find the mean and standard deviation for the total revenue from the tickets she writes in an hour. (b) What is the probability that between 2 a.m. and 3 a.m. she writes five tickets for speeding and one for DWI. (c) Let \(A\) be the event that she writes no tickets between 1 a.m. and 1:30, and \(N\) be the number of tickets she writes between 1 a.m. and 2 a.m. Which is larger \(P(A)\) or \(P(A|N = 5)\)?

Don’t just answer yes or no, compute both probabilities.

2.44. Ignoring the fact that the bar exam is only given twice a year, let us suppose that new lawyers arrive in Los Angeles according to a Poisson process with mean 300 per year. Suppose that each lawyer independently practices for an amount of time \(T\) with a distribution function \(F(t) = P(T \leq t)\) that has \(F(0) = 0\) and mean 25 years. Show that in the long run the number of lawyers in Los Angeles is Poisson with mean 7500.

More Theoretical Exercises

2.45. Copy machine 1 is in use now. Machine 2 will be turned on at time \(t\). Suppose that the machines fail at rate \(\lambda_i\). What is the probability that machine 2 is the first to fail?

2.46. Customers arrive according to a Poisson process of rate \(\lambda\) per hour. Joe does not want to stay until the store closes at \(T = 10\) p.m., so he decides to close up when the first customer after time \(T - s\) arrives. He wants to leave early but he does not want to lose any business so he is happy if he leaves before \(T\) and no one arrives after. (a) What is the probability he achieves his goal? (b) What is the optimal value of \(s\) and the corresponding success probability?
2.47. Let S and T be exponentially distributed with rates λ and μ. Let $U = \min\{S, T\}$ and $V = \max\{S, T\}$. Find (a) EU. (b) $E(V - U)$, (c) EV. (d) Use the identity $V = S + T - U$ to get a different looking formula for EV and verify the two are equal.

2.48. Let S and T be exponentially distributed with rates λ and μ. Let $U = \min\{S, T\}, V = \max\{S, T\}$, and $W = V - U$. Find the variances of $U, V,$ and W.

2.49. Consider a bank with two tellers. Three people, Alice, Betty, and Carol enter the bank at almost the same time and in that order. Alice and Betty go directly into service while Carol waits for the first available teller. Suppose that the service times for each teller are exponentially distributed with rates $\lambda \leq \mu$. (a) What is the expected total amount of time for Carol to complete her businesses? (b) What is the expected total time until the last of the three customers leaves? (c) What is the probability Carol is the last one to leave?

2.50. A flashlight needs two batteries to be operational. You start with n batteries numbered 1 to n. Whenever a battery fails it is replaced by the lowest-numbered working battery. Suppose that battery life is exponential with mean 100 hours. Let T be the time at which there is one working battery left and N be the number of the one battery that is still good. (a) Find ET. (b) Find the distribution of N.

2.51. Let $T_i, i = 1, 2, 3$ be independent exponentials with rate λ_i. (a) Show that for any numbers t_1, t_2, t_3

$$\max\{t_1, t_2, t_3\} = t_1 + t_2 + t_3 - \min\{t_1, t_2\} - \min\{t_1, t_3\}$$

$$- \min\{t_2, t_3\} + \min\{t_1, t_2, t_3\}$$

(b) Use (a) to find $E \max\{T_1, T_2, T_3\}$. (c) Use the formula to give a simple solution of part (c) of Exercise 2.10.

2.52. Consider a Poisson process with rate λ and let L be the time of the last arrival in the interval $[0, t]$, with $L = 0$ if there was no arrival. (a) Compute $E(t - L)$ (b) What happens when we let $t \to \infty$ in the answer to (a)?

2.53. Policy holders of an insurance company have accidents at times of a Poisson process with rate λ. The distribution of the time R until a claim is reported is random with $P(R \leq r) = G(r)$ and $ER = \nu$. (a) Find the distribution of the number of unreported claims. (b) Suppose each claim has mean μ and variance σ^2. Find the mean and variance of S the total size of the unreported claims.

2.54. Let S_t be the price of stock at time t and suppose that at times of a Poisson process with rate λ the price is multiplied by a random variable $X_i > 0$ with mean μ and variance σ^2. That is,

$$S_t = S_0 \prod_{i=1}^{N(t)} X_i$$

where the product is 1 if $N(t) = 0$. Find $ES(t)$ and $\text{var} S(t)$.

2.55. Let \(\{N(t), t \geq 0\} \) be a Poisson process with rate \(\lambda \). Let \(T \geq 0 \) be an independent with mean \(\mu \) and variance \(\sigma^2 \). Find \(\text{cov}(T, N_T) \).

2.56. Messages arrive to be transmitted across the internet at times of a Poisson process with rate \(\lambda \). Let \(Y_i \) be the size of the \(i \)th message, measured in bytes, and let \(g(z) = E[z^{Y_i}] \) be the generating function of \(Y_i \). Let \(N(t) \) be the number of arrivals at time \(t \) and \(S = Y_1 + \cdots + Y_{N(t)} \) be the total size of the messages up to time \(t \). (a) Find the generating function \(f(z) = E(z^{S}) \). (b) Differentiate and set \(z = 1 \) to find \(ES \). (c) Differentiate again and set \(z = 1 \) to find \(E[S(S - 1)] \). (d) Compute \(\text{var}(S) \).

2.57. Consider a Poisson process with rate \(\lambda \) and let \(L \) be the time of the last arrival in the interval \([0, t] \), with \(L = 0 \) if there was no arrival. (a) Compute \(E(L) \). (b) What happens when we let \(t \to \infty \) in the answer to (a)?

2.58. Let \(t_1, t_2, \ldots \) be independent exponential(\(\lambda \)) random variables and let \(N \) be an independent random variable with \(P(N = n) = (1 - p)^{n-1}p \). What is the distribution of the random sum \(T = t_1 + \cdots + t_N \)?

2.59. Signals are transmitted according to a Poisson process with rate \(\lambda \). Each signal is successfully transmitted with probability \(p \) and lost with probability \(1 - p \). The fates of different signals are independent. For \(t \geq 0 \) let \(N_1(t) \) be the number of signals successfully transmitted and let \(N_2(t) \) be the number that are lost up to time \(t \). (a) Find the distribution of \((N_1(t), N_2(t)) \). (b) What is the distribution of \(L = \) the number of signals lost before the first one is successfully transmitted?

2.60. Starting at some fixed time, which we will call 0 for convenience, satellites are launched at times of a Poisson process with rate \(\lambda \). After an independent amount of time having distribution function \(F \) and mean \(\mu \), the satellite stops working. Let \(X(t) \) be the number of working satellites at time \(t \). (a) Find the distribution of \(X(t) \). (b) Let \(t \to \infty \) in (a) to show that the limiting distribution is Poisson(\(\lambda \mu \)).

2.61. Consider two independent Poisson processes \(N_1(t) \) and \(N_2(t) \) with rates \(\lambda_1 \) and \(\lambda_2 \). What is the probability that the two-dimensional process \((N_1(t), N_2(t)) \) ever visits the point \((i, j) \)?
Essentials of Stochastic Processes
Durrett, R.
2016, IX, 275 p. 26 illus., Hardcover
ISBN: 978-3-319-45613-3