Contents

1 Introduction ... 1
References .. 4

Part I Theoretical Foundations

2 State-of-the-Art for the BIEM ... 9
2.1 The BIEM as an Effective Computational Tool 9
 2.1.1 Available Computational Techniques for
 Elastodynamics of Inhomogeneous Media 10
 2.1.2 BIEM for Inhomogeneous and Heterogeneous
 Media ... 11
 2.1.3 Fundamental Solutions for Continuously
 Inhomogeneous Media and BIEM Formulations 15
 2.1.4 Green’s Functions and BIEM Formulations
 for a Homogeneous Half-Space 19
 2.1.5 BIEM Based on the Green’s Function
 for a Layered Half-Plane 20
 2.1.6 BIEM Based on the Green’s Function for a
 Continuously Inhomogeneous in Depth Half-Plane 21
2.2 BIEM Application in Seismic Wave Propagation Problems 22
 2.2.1 Elastic Waves in Crack-Free Media 22
 2.2.2 Elastic Waves in Fractured Media 27
References .. 36

3 Elastodynamic Problem Formulation 53
3.1 Elastodynamic Field Equations 53
3.2 Problem Formulation ... 56
 3.2.1 Anti-plane Case 60
 3.2.2 In-Plane Case 61
3.3 The Double Role of Heterogeneities 62
 3.3.1 Heterogeneities as Wave Scatterers 62
 3.3.2 Heterogeneities as Stress Concentrators 63

ix
3.4 Problem Formulation Using BIE Based on the Fundamental Solution ... 65
 3.4.1 Displacement BIE for Crack-Free Domains 65
 3.4.2 Degeneration of Displacement BIE for Cracked Domains ... 67
 3.4.3 Traction BIE for Cracked Domains 67
 3.4.4 BIEM for Inhomogeneous and Heterogeneous Media ... 72
3.5 Problem Formulation via BIE Based on the Green’s Function ... 74
 3.5.1 Advantages and Disadvantages of BIEM Based on the Green’s Function 74
 3.5.2 BIEM for Inhomogeneous Half-Plane with Surface Relief and Cavities 75
References ... 77

4 Fundamental Solutions for a Class of Continuously Inhomogeneous, Isotropic, and Anisotropic Materials ... 79
 4.1 Introduction .. 79
 4.2 Problem Statement 80
 4.3 Transformation of the Governing Equation 81
 4.3.1 Material Profiles 82
 4.3.2 Transformed Equations 83
 4.4 Application of Radon Transform 83
 4.5 Fundamental Solution for ‘Case A’ 86
 4.5.1 Inverse Radon Transform 88
 4.5.2 Asymptotic Behavior 89
 4.6 Fundamental Solution for ‘Case B’ 90
 4.7 Inhomogeneous Isotropic Material 93
 4.7.1 ‘Case A’ Results 94
 4.7.2 ‘Case B’ Results 94
 4.7.3 Poisson’s Equation as a Special Case 95
References ... 99

5 Green’s Function for the Inhomogeneous Isotropic Half-Plane ... 101
 5.1 Half-Plane Green’s Function: In-Plane Case 101
 5.1.1 Introduction 101
 5.1.2 Problem Statement and Solution Outline 102
 5.1.3 Solution Methodology 104
 5.1.4 Recovery Process for the Homogeneous Case 108
 5.1.5 Elastostatic Green’s Functions for the Half-Plane 110
 5.2 Half-Plane Green’s Function: Anti-plane Case 112
 5.2.1 Introduction 112
 5.2.2 Statement of the Problem and Solution Method 113
References ... 120
6 Wave Propagations in Inhomogeneous Isotropic/Orthotropic Half-Planes

- **6.1 The Isotropic and Inhomogeneous Half-Plane**
 - Introduction and Problem Statement: 123
 - The Inhomogeneous Half-Plane: 128

- **6.2 Inhomogeneous Orthotropic Half-Planes**
 - Introduction and Problem Statement: 134
 - Half-Plane Solutions: 136

References
- 145

Part II Wave Propagation in Inhomogeneous and Heterogeneous Regions: The Anti-Plane Strain Case

7 Anti-plane Strain Wave Motion in Unbounded Inhomogeneous Media

- **7.1 SH Wave Propagation in an Exponentially Inhomogeneous Plane with Cavities and Cracks**
 - Introduction: 149
 - Problem Statement: 150
 - BIEM Formulation: 153
 - Numerical Implementation and Results: 156

- **7.2 SH Wave Scattering in an Orthotropic Half-Plane Weakened by Cavities**
 - Introduction: 161
 - Statement of the Problem: 161
 - Green’s Function: 163
 - Boundary Integral Equations: 165
 - Numerical Solutions: 166

- **7.3 A Quadratically Inhomogeneous Half-Plane with Free Surface Relief Under SH Wave**
 - Introduction and Problem Statement: 170
 - Green’s Function of Inhomogeneous In-depth Half-Plane: 172
 - BIEM Formulation: 173
 - Numerical Scheme and Its Verification: 174
 - Parametric Study: 176

References
- 178

8 Anti-plane Strain Wave Motion in Finite Inhomogeneous Media

- **8.1 Introduction**
- **8.2 Description of the Problem**
 - The BVP 1 Statement: 187
 - The BVP 2 Statement: 188
Part III Wave Propagation in Inhomogeneous and Heterogeneous Regions: The In-Plane Case

9 In-Plane Wave Motion in Unbounded Cracked Inhomogeneous Media

9.1 Wave Scattering by Cracks in Infinite Quadratically Inhomogeneous Media 213

9.1.1 Introduction 213

9.1.2 Boundary-Value Problem Formulation 214

9.1.3 Fundamental Solutions for the Inhomogeneous Continuum 216

9.1.4 Numerical Solution of the BVP 218

9.1.5 Numerical Examples 220

9.2 Wave Scattering by Cracks in Infinite, Exponentially Inhomogeneous Media 231

9.2.1 Introduction 231

9.2.2 Problem Statement 231

9.2.3 Fundamental Solution and Incident Plane Wave Solutions 234

9.2.4 BIEM Formulation and Numerical Implementation 236

9.2.5 Numerical Results 238

References 244
10 Site Effects in Finite Geological Region Due to Wavepath Inhomogeneity

10.1 Introduction .. 247
10.2 Formulation of the Problem 248
 10.2.1 Internal Problem 249
 10.2.2 External Problem 250
 10.2.3 Superposition of the Internal and External Subproblems ... 251
10.3 Hybrid BIE-Plane Wave Decomposition Method 251
 10.3.1 BIE Method for Solution of the Internal Problem 252
 10.3.2 Hybrid BIE-Plane Wave Decomposition Method for Solution of the External Problem 252
 10.3.3 Free-Field Motion in the Half-Plane 253
 10.3.4 Composite Region Solution Strategy 254
10.4 Numerical Example 255
 10.4.1 The Q-Inhomogeneous Half-Plane 257
 10.4.2 The E-Inhomogeneous Half-Plane 262
References ... 264

11 Wave Scattering in a Laterally Inhomogeneous, Cracked Poroelastic Finite Region

11.1 Introduction .. 265
11.2 Problem Formulation 266
 11.2.1 Governing Equation of Motion and Boundary Conditions ... 266
 11.2.2 The Bardet’s Viscoelastic Model 269
11.3 Hybrid Computational Model 272
 11.3.1 Hybrid Computational Technique 273
 11.3.2 The Combined BEM Approach 274
11.4 Numerical Results 276
 11.4.1 Finite Laterally Non-homogeneous Cracked Geological Inclusion in a Layered Half-Plane Containing a Seismic Source ... 277
 11.4.2 Layered Poroelastic Half-Plane Containing a Seismic Source ... 282
 11.4.3 Poroelastic Cracked Geological Inclusion in a Homogeneous Half-Plane Swept by Elastic Waves 287
References ... 288

Index .. 291
Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements
Manolis, G.D.; Dineva, P.S.; Rangelov, T.V.; Wuttke, F.
2017, XVI, 294 p. 95 illus., Hardcover
ISBN: 978-3-319-45205-0