The introduction of robotic surgery to the field of urology has had a dramatic impact on practice patterns worldwide. Few events have had as significant an impact on the field of urology even greater than the introduction of shock wave lithotripsy, lasers, percutaneous surgery, and laparoscopy. Despite the widespread adoption of robotics into urologic practice, robotic urologic procedures remain technically complex and the skill sets required to perform robotic surgery differ significantly from that of traditional open surgery.

Unlike open surgery where tactile feedback is frequently used as an intraoperative tool to provide the surgeon with critical information, during robotic surgery, the surgeon is immersed in an environment absent of haptic feedback where operative decisions are made based instead on subtleties and nuances provided primarily by visual cues. Visual cues such as vascularity, organ movement, tissue distortion, and adherence offer different and unique insights into the nature and behavior of organs and their interaction with surrounding structures such as blood vessels, fat, nerves, and muscles. As a result, surgeons are required to think and interpret surgical dissection in a way that is unique and different from their training in open surgery.

Since the introduction of robotic prostatectomy, there has been continued enthusiasm and expansion of robotic surgery in other areas of urologic surgery. The largest growth has been in the area of oncologic procedures with rapid adoption of robotic partial nephrectomy and radical cystectomy. In addition, robotic reconstructive and pediatric procedures continue to expand. As a result, the second edition of the Atlas of Robotic Urologic Surgery was compiled to address the continued expansion of robotics in the field of urologic surgery. As with the first edition of the Atlas, a detailed, step-by-step description of all currently performed robotic urologic procedures is provided by internationally recognized experts in the field. Each chapter is highly illustrated by the same artist to provide uniformity and standardization. Each procedural chapter is complemented by figures and intraoperative photographs, detailing the nuances of each technique. Emphasis is placed on operative setup, instrument and equipment needs, and surgical techniques for both the primary surgeon and the operative assistant. As such, this comprehensive surgical atlas provides educational value to both novice and advanced robotic surgeons as well as the operative assistant. My hope is that this atlas will provide unique insights into robotic urologic surgery and reduce the challenging learning curve of accomplishing these increasingly popular procedures.

Gainesville, FL, USA

Li-Ming Su, M.D.
Atlas of Robotic Urologic Surgery
Su, L.-M. (Ed.)
2017, XVII, 484 p. 442 illus., 393 illus. in color., Hardcover
ISBN: 978-3-319-45058-2