Part XII Plasma and Magnetohydrodynamics

K.K.N. Anbuselvan and K.P.J. Reddy

Pulse Gas Injection in Separation Zone of Hypersonic MHD Flow Over Rotation Body ... 795
E. Gubanov, A. Likhachev, and S. Medin

Observations of the Magnetized Disruption of Collimated Plasma Flows ... 801
Mario Manuel, Carolyn Kuranz, Alex Rasmus, Sallee Klein, Michael MacDonald, Matt Trantham, Jeff Fein, Pat Belancourt, Rachel Young, Paul Keiter, R.P. Drake, Brad Pollock, Jaebum Park, Andrew Hazi, Jackson Williams, and Hui Chen

Shock-Wave Formation by Nanosecond Multichannel Surface Discharges ... 803
A.E. Lutsky, I.V. Mursenkova, and I.A. Znamenskaya

Experimental Investigations on a Free-Flying Supersonic Projectile Model Submitted to an Electric Discharge Generating Plasma ... 807
P. Gnenmi and C. Rey

Wave Profile and Current Limits for Lightning Return Stroke ... 813
M. Hemmati, W.C. Childs, R.S. Horn, and H.S. Shojaei

Part XIII Re-entry to Earth Atmosphere

In Situ Ablation Measurement for an Ablative Heat Shield Using an Embedded Sensor ... 821
T. Sakai, H. Nakazawa, Y. Dantsuka, K. Kitagawa, K. Hirai, and Y. Ishida

Preliminary Experimental Investigation of Air Radiation in Superorbital Expanding Flow ... 827
H. Wei, R.G. Morgan, U.A. Sheikh, P.A. Jacobs, R.J. Gollan, and T.J. McIntyre

Comparison of Chemical Reaction Models with Various Experimental Reentry Capsules Using DSMC ... 833
Tapan K. Mankodi, Upendra V. Bhandarkar, and Bhalchandra P. Puranik

Experimental and Numerical Assessment of Aerothermal Environments About Jupiter Trojan Sample Return Capsule ... 839
Part XIV Shock Waves in Rarefied Gases

Numerical Study of High-Energy Collisions Inside the Shock Wave in a Gas Mixture ... 847
F. Tcheremissine, O. Dodulad, and Yu. Kloss

A Numerical Investigation of Shock Propagation and Attenuation in a Three-Dimensional Micro-duct 853
A. Deshpande and Bhalchandra P. Puranik

Experimental Study on the Interaction of Under-expanded Jets in Rarefied Flow Regimes ... 859
A. Vinod Yeldeo Baby and B. Rajesh G.

Structure and Expansion of a Plume Emitted During Laser Ablation of Multicomponent Materials 869
A.M. Słowicka, Z.A. Walenta, J. Hoffman, J. Chrzanowska, and T. Mościcki

Impact of the Interplanetary Magnetic Field to Impingement of a Solar Wind Rotational Discontinuity on the Earth’s Bow Shock ... 875
E.A. Pushkar

Part XV Shock Waves in Solids

Investigation on Shock Wave-Assisted Deformation of Nano Nickel ... 885
Anuj Bisht, G. Jagadeesh, and Satyam Suwas

On the Shock-Induced Structures in Copper .. 891
Yu. Meshcheryakov, N.I. Zhigacheva, A. Divakov, G.V. Konovalov, and B. Barakhtin

Layered Pre-fragmentation Warhead Reveals Strong Shock Wave Effect ... 897
Eitan Hirsch, Roman Shapiro, and Amos Raz

Structural Transformation in Two-Component Medium .. 899
D.A. Indeitsev, D.Yu. Skubov, and D.S. Vavilov

Application of Mathematical Programming for Analysis of Experimental Data Obtained at the Hopkinson’s Stand 903
Andrei Kuchmin and Andrei Abramyan

O. Naimark

Shock Wave Response of Iron-Based Metallic Glass Matrix Composites .. 913
Gauri R. Khanolkar, James P. Kelly, Olivia A. Graeve, Andrea M. Hodge, and Veronica Eliasson

Detonation Shock Waves in Various Media ... 917
Alex Zlatkis, Itzhak David, Maxim Teitel, and Evgeny Gofman

Detonation Velocity Dependence on Front Curvature for Overdriven Detonation in Solid Explosives 923
Y. Partom
Contents

Part XVIII Shock Wave Focusing

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similarity Parameters for Shock Waves in Dense Fluids</td>
<td>1009</td>
</tr>
<tr>
<td>Z.A. Walenta and A.M. Słowicka</td>
<td></td>
</tr>
<tr>
<td>Experimental Investigation of Shock Wave Amplification</td>
<td></td>
</tr>
<tr>
<td>Using Multiple Munitions</td>
<td>1017</td>
</tr>
<tr>
<td>Veronica Eliasson and J. Gross</td>
<td></td>
</tr>
<tr>
<td>Shock Focusing Effect for The Interaction of Blunt Bodies</td>
<td></td>
</tr>
<tr>
<td>with Gas Bubbles in a Supersonic Flow</td>
<td>1023</td>
</tr>
<tr>
<td>P. Georgievskiy, V. Levin, and O. Sutyrin</td>
<td></td>
</tr>
<tr>
<td>A Parameter Study of Shock Focusing Phenomenon</td>
<td></td>
</tr>
<tr>
<td>for Shock-Elliptic Bubble Interaction</td>
<td>1029</td>
</tr>
<tr>
<td>P. Georgievskiy, V. Levin, and O. Sutyrin</td>
<td></td>
</tr>
<tr>
<td>Coalescence and Interaction of Blast Waves Using</td>
<td></td>
</tr>
<tr>
<td>Multiple Munitions</td>
<td>1035</td>
</tr>
<tr>
<td>Shi Qiu and Veronica Eliasson</td>
<td></td>
</tr>
<tr>
<td>Temperature Measurements at the Focus of a Converging Spherical</td>
<td></td>
</tr>
<tr>
<td>Shock Wave</td>
<td>1041</td>
</tr>
<tr>
<td>M. Liverts, N. Tillmark, and N. Apazidis</td>
<td></td>
</tr>
<tr>
<td>Preliminary Design and Optimization of 2D Supersonic Intake</td>
<td></td>
</tr>
<tr>
<td>Using OpenFOAM</td>
<td>1047</td>
</tr>
<tr>
<td>D. Mukundhan and Rakesh Kumar</td>
<td></td>
</tr>
<tr>
<td>A New Method of Convergent Contour Design for Planar Shock Wave</td>
<td></td>
</tr>
<tr>
<td>Enhancement in a Shock Tube</td>
<td>1053</td>
</tr>
<tr>
<td>Dongwen Zhan, Yujian Zhu, and Jiming Yang</td>
<td></td>
</tr>
<tr>
<td>Investigations of Shock Wave Reflection and Focusing</td>
<td></td>
</tr>
<tr>
<td>in Different Triangle Wedges</td>
<td>1059</td>
</tr>
<tr>
<td>C. Zheng, Z. Chen, and X. Sun</td>
<td></td>
</tr>
</tbody>
</table>

Part XIX Richtmyer–Meshkov Instability

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Simulations of the Turbulent Richtmyer-Meshkov Instability in a Spherically Convergent Geometry</td>
<td>1067</td>
</tr>
<tr>
<td>I. Boureïma and P. Ramaprabhu</td>
<td></td>
</tr>
<tr>
<td>Richtmyer-Meshkov Instability in a Cylindrical Geometry</td>
<td></td>
</tr>
<tr>
<td>Using a Conventional Shock Tube</td>
<td>1073</td>
</tr>
<tr>
<td>Laurent Biamino, Georges Jourdan, Christian Mariani, Lazhar Houas, Marc Vandenberg, and Denis Souffland</td>
<td></td>
</tr>
<tr>
<td>A Semi-annular Cylindrically Converging Shock Tube</td>
<td></td>
</tr>
<tr>
<td>for Richtmyer-Meshkov Instability Studies</td>
<td>1079</td>
</tr>
<tr>
<td>Juchun Ding, Ting Si, Minghu Wang, and Xisheng Luo</td>
<td></td>
</tr>
<tr>
<td>Experimental Study on the Interaction of Cylindrical Converging Shock Waves with Sinusoidal Light-Heavy Interface</td>
<td>1085</td>
</tr>
<tr>
<td>Fu Zhang, Zhigang Zhai, Ting Si, and Xisheng Luo</td>
<td></td>
</tr>
<tr>
<td>Effects of Density Distribution on Reshocked Gas Cylinder</td>
<td>1091</td>
</tr>
<tr>
<td>Xiansheng Wang, Xisheng Luo, and Dangguo Yang</td>
<td></td>
</tr>
</tbody>
</table>
A Numerical Investigation of Shockwave-Cylindrical Gas Inhomogeneity Interaction for Convergent and Divergent Geometries .. 1097
M.P. Ray, Bhalchandra P. Puranik, and Upendra V. Bhandarkar

On the Richtmyer-Meshkov Instability of a Three-Dimensional Single-Mode Interface: Effect of Initial Interfacial Principal Curvatures 1103
B. Guan and Xisheng Luo

Numerical investigation of 3D effects on a 2D dominated flow 1109
Daniel Reese and Chris Weber

Mach Number Influence on Ignition and Mixing Processes in a Reacting Shock–Bubble Interaction .. 1115
Felix Diegelmann, Volker Tritschler, and Stefan Hickel

Richtmyer-Meshkov Instability Shock Tube Experiments with Mixing Measurements 1121
V. Krivets, K. Ferguson, and J. Jacobs

Experimental Investigations of Three-Dimensional Shock-Vortex Loop Interaction: Shock Reflection and Diffraction Phenomena 1127
T. Ukai, H. Zare-Behtash, K. Kontis, and S. Obayashi

Part XX Shock Boundary Layer Interaction

Shock Wave Boundary Layer Interaction Control by Rod Vortex Generators 1135
R. Szwaba and P. Doerffer

Consistency of Double Wedge Shock–Boundary Layer Interaction Between Numerical Simulation and Experiment 1141
Xiaofeng Shi, Yujian Zhu, and Jiming Yang

Analysis of Upstream Conditions Effect on Shock Wave–Boundary Layer Interaction at Moderate Mach Number 1147
Pavel Polivanov, Andrey Sidorenko, and Anatoly Maslov

Experimental Investigation of Shock-Bubble Properties at the Liquid–Air Phase Boundary 1153
W. Garen, B. Meyerer, Y. Kai, W. Neu, S. Koch, and U. Teubner

Numerical Study of a Transonic Wingtip Flow 1159
James R. Grisham, Frank K. Lu, and Brian H. Dennis

Control of Unsteadiness in Shock Wave–Boundary Layer Interaction by Repetitive Laser Energy Deposition 1165
T. Shoda, T. Tamba, S. Pham, A. Iwakawa, and A. Sasoh

Aeroheating Test of Double Cone Configurations in Shock Tunnel 1171
Jiasui Zhou, Tao Jiang, Xiaowei Ma, Rongzong Kong, Kouli Zhang, and Runyu Tian

Induction Time Measurements in Shock Tube of Different Roughness 1177
O. Penyazkov and A. Skilandz
Control of Boundary Layer Separation in Supersonic Flow
Using Injection Through Microramps 1183
S. Vaisakh and T.M. Muruganandam

Shock-Induced Large Separation Bubbles Near the Leading Edge of a Flat Plate at Hypersonic Mach Numbers .. 1189
Srinath Lakshman, R. Sriram, and G. Jagadeesh

Flow Separation Control Over a Ramp with Nanosecond-Pulsed Plasma Actuators .. 1195
Y.D. Cui, Z.J. Zhao, J. Li, J.G. Zheng, and B.C. Khoo

Generation and Propagation of Shock Waves in Submillimeter Capillaries .. 1201
Y. Kai, W. Garen, and U. Teubner

Influence of Boundary Layer Bleed Slot Width onto Static and Total Pressure Recovery of a Shock Train .. 1205
A. Weiss and H. Olivier

Expansion Wave/Boundary Layer Interaction .. 1211
J. Thomas, B.W. Skews, and R.T. Paton

Shock Tunnel Studies of the Unsteady Hypersonic Flowfield Around Spiked Bodies .. 1217
G. Balakalyani, R. Sriram, and G. Jagadeesh

Plasma Control of Transonic Shock Wave/Boundary Layer Interaction .. 1223
Andrey Sidorenko, Alexey Budovskii, Pavel Polivanov, and Anatoly Maslov

Investigations on Unsteadiness and Instability of Shock/Boundary Layer Interactions of the Ramp Flow by DNS .. 1225
Dong Sun, Qin Li, and Hanxin Zhang

Design and Execution of a Hypersonic Boundary-Layer Trip Transition Experiment on Blunt Cone Flare Models with Distributed Roughness .. 1231
S. Seror, L. Kosarev, and Oren Sadot

Part XXI Multiphase Flow

Water Nucleation Measurements in a Pulse-Expansion Wave Tube .. 1239
M.A.L.J. Fransen, J. Hrubý, D.M.J. Smeulders, and M.E.H. van Dongen

Modified Ghost Fluid Method for the Fluid Elastic-Perfectly Plastic Solid Interaction .. 1245
S. Gao and T.G. Liu

Evolution of a Cloud of Cavitation Bubbles in a Disturbed Compressible Liquid: A Numerical Study .. 1251
N. Petrov and A. Schmidt

Towards Particle Image Velocimetry Measurements During Shock–Particle Curtain Interactions .. 1257
J. Wagner, S. Beresh, E. DeMauro, B. Pruett, and P. Farias

Flow Separation in Rocket Nozzles Under High Altitude Condition .. 1263
R. Stark and C. Génin
On the Early-Stage Deformation of Liquid Drop in Shock-Induced Flow
Xiangyu Yi, Yujian Zhu, and Jiming Yang

1269

Numerical Investigation of Shock-Induced Bubble Collapse in Water
N. Apazidis

1275

Suction Force Induced by the Collapse of a Near-Wall Bubble
M. Sun

1281

Toward the Prediction of Far-Field Pressure Induced by the Atmospheric Entry of a Small Meteorite
Ryo Maruyama and M. Sun

1287

Pressure Field Produced by the Rapid Vaporization of a CO2 Liquid Column
G. Ciccarelli, J. Melguizo-Gavilanes, and J.E. Shepherd

1293

Penetration of Cryogenic Nitrogen Jets into a Liquid: “Phase Explosion” and Formation of Bubble Clusters
V. Kedrinskiy, V. Kuzavov, and G. Lazareva

1299

Part XXII Blast Waves

Shock Wave Energy: Explosions in Air, Ground, and Water
Lippe D. Sadwin, Michael M. Swisdak, Y. Gitterman, and Oren Lotan

1307

The Energy Distribution of Explosions
Hai Kedar, Lippe D. Sadwin, and David Ornai

1313

Blast Wave Observations for Large-Scale Underwater Explosions in the Dead Sea
Y. Gitterman and Lippe D. Sadwin

1315

Blast Waves Caused by Internal Explosion in Ammunition and Explosive Facility: Vulnerability and Protection Alternatives
David Ornai, Igal M. Shohet, Arie Boimel, Erez Gal, Robert Levy, Sima M. El Kabetz, Liav Yaloz, and Eyal Mendel

1321

Exploration of Methods in the Exploding Wire Technique for Simulating Large Blasts
E. Nof, O. Ram, E. Kochavi, Gabi Ben-Dor, and Oren Sadot

1327

Development of a Vertical Shock Tube Facility for Blast Testing Applications
I. Obed Samuelraj and G. Jagadeesh

1333

Effects of Negative Overpressure Phase of a Laser Breakdown-Induced Blast Wave on Impulse Characteristics

1339

The Influence of Soil Characteristics on the Blast Intensity of Buried Explosive Charges
Oded Drori, Zvi Assaf, Eylam Ran, Guy Golan, and Itzhak Kuchuk Katalan

1345

Partitioning of a Scaled Shallow-Buried Near-Field Blast Load
J.D. Reinecke, F.J. Beetge, I. Horsfall, and M. Miaymbo

1351

Prevention of Blast Waves Focusing in Designing and Testing of Blast-Resistant Constructions

1357
Analysis and Testing of Combined Blast Inhibitors
M.V. Silnikov, M.V. Chernyshov, N.A. Danilov, I.A. Melnikov,
A.I. Mikhailin, A.S. Pankov, V.N. Shishkin, and N.N. Vasilyev

Reconstruction of Recoilless Weapon Blast Environments Using High-Fidelity Simulations
Suthee Wiri, Thomas Wofford, Troy Dent, and Charles Needham

Development of a Risk-Informed Decision Support Model for Protecting an Urban Medical Center from a Nuclear Explosion
Benny Brosh, David Ormai, Igal M. Shohet, and Gabi Ben-Dor

Part XXIII Facilities

Behavior of the Shock Wave Propagating in the Small-Diameter Tubes
S. Udagawa, W. Garen, T. Inage, M. Ota, and K. Maeno

Hypersonic Research in the High-Enthalpy Shock Tunnel Göttingen
K. Hannemann

Simulating Gas Giant Entry with Increased Helium Diluent in an Expansion Tube
C.M. James, D.E. Gildfind, R.G. Morgan, S.W. Lewis, and T.M. McIntyre

A New Sliding Joint to Accommodate Recoil of a Free-Piston Driven Expansion Tube
D.E. Gildfind and R.G. Morgan

A Comparative Study of Shockwave Propagation in Different Diameter Miniature Shock Tubes
S. Janardhanraj and G. Jagadeesh

Indraft Supersonic Wind Tunnel for Shock Train Investigations
F. Gnani, H. Zare-Behtash, and K. Kontis

Experiments Using Reddy Tube-Driven Tabletop Hypersonic Shock Tunnel
K.P.J. Reddy, N. Sharath, Ramesh Babu, and Chintoo S. Kumar

Rapid Assessment on Flow Parameter Matching Scheme in Aerodynamic Testing in a Combustion Wind Tunnel
Kunwei Liu, Yujian Zhu, Jiming Yang, and Yingchuan Wu

The T4 Stalker Tube
David J. Mee, R.G. Morgan, Allan Paull, P.A. Jacobs, and Michael K. Smart

Stalker Tube Activities in India
K.P.J. Reddy

Part XXIV Flow Visualization

Tomographic Visualization of the Hypersonic Flow Field over a Waverider
K. Nagashetty, Biswajit Medhi, R. Sriram, G. Jagadeesh, and K.P.J. Reddy

Effect of Primary Flow Mach Number on the Non-mixed Length in a Two-Dimensional Supersonic Ejector
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse-Burst PIV in a High-Speed Wind Tunnel</td>
<td>1447</td>
</tr>
<tr>
<td>Steven J. Beresh, Justin L. Wagner, John F. Henfling, Russell W. Spillers, and Brian O.M. Pruett</td>
<td></td>
</tr>
<tr>
<td>A Novel Pressure-Sensitive Luminescent Coating for Microscale Flow Visualization</td>
<td>1451</td>
</tr>
<tr>
<td>Y. Sakamura, S. Kawabata, Y. Arai, and K. Nagano</td>
<td></td>
</tr>
<tr>
<td>Handheld Wavefront Measuring Camera for Quantitative Flow Visualization</td>
<td>1455</td>
</tr>
<tr>
<td>Flow Visualization of the Exhaust Jet from a Pulse Detonation Engine by Mie Scattering</td>
<td>1461</td>
</tr>
<tr>
<td>F.K. Lu, D.D. Joshi, J.T. Peace, R.T. Bello, and J.D. Carter</td>
<td></td>
</tr>
<tr>
<td>Design of a Focusing Schlieren Setup for Use in a Supersonic Combustion Chamber</td>
<td>1467</td>
</tr>
<tr>
<td>Manuel N. Bühler, Felix J. Förster, Nils C. Dröske, Jens von Wolfersdorf, and Bernhard Weigand</td>
<td></td>
</tr>
<tr>
<td>Improved Flow Visualization for Fast Recovery of Flow Gradients in Shadow-Casting Technique</td>
<td>1473</td>
</tr>
<tr>
<td>Quantitative Flow Visualization by Wavefront Reconstruction: A Focal Stack Approach</td>
<td>1477</td>
</tr>
<tr>
<td>Shock Induced Flow Through a Pipegap</td>
<td>1481</td>
</tr>
<tr>
<td>S. Kapfudzaruwa, B.W. Skews, and R.T. Paton</td>
<td></td>
</tr>
<tr>
<td>Part XXV Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>New Methods for Resolution Improvement in Simulations on Subtle Structures Generated by Shock Waves</td>
<td>1489</td>
</tr>
<tr>
<td>Qin Li, Pengxin Liu, and Hanxin Zhang</td>
<td></td>
</tr>
<tr>
<td>A Characteristic Space–Time CE/SE Method for Shock Capturing</td>
<td>1495</td>
</tr>
<tr>
<td>H. Shen and C.Y. Wen</td>
<td></td>
</tr>
<tr>
<td>Development of an Unsteady Shock-Fitting Technique for Unstructured Grids</td>
<td>1501</td>
</tr>
<tr>
<td>Aldo Bonfiglioli, Renato Paciorri, Lorenzo Campoli, Valentina De Amicis, and Marcello Onofri</td>
<td></td>
</tr>
<tr>
<td>On the Propagation of Curved Shockwaves Using Geometric Shock Dynamics</td>
<td>1505</td>
</tr>
<tr>
<td>Bright B. Ndebele, B.W. Skews, and R.T. Paton</td>
<td></td>
</tr>
<tr>
<td>Part XXVI Commercial Lecture</td>
<td></td>
</tr>
<tr>
<td>Engineering Tools for the Analysis of Penetration and Fragmentation</td>
<td>1513</td>
</tr>
<tr>
<td>T. Hartmann, E. Rottenkolber, and Arie Boimel</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>1519</td>
</tr>
<tr>
<td>Subject Index</td>
<td>1525</td>
</tr>
</tbody>
</table>
30th International Symposium on Shock Waves 2
ISSW30 - Volume 2
Ben-Dor, G.; Sadot, O.; Igra, O. (Eds.)
2017, XXXI, 742 p. 704 illus., 355 illus. in color.,
Hardcover
ISBN: 978-3-319-44864-0