Contents

1 Introduction to Dynamical Systems ... 1
 1.1 Basic Concepts ... 1
 1.1.1 Invariant Sets .. 1
 1.1.2 Topological Classification. Stability 6
 1.1.3 Hyperbolicity. The Simplest Hyperbolic Sets 8
 1.2 Basic Sets .. 13
 1.2.1 Axiom A. Spectral Decomposition Theorem 13
 1.2.2 Transversality. Absence of Cycles 17
 1.2.3 A Markov Chain and a Solenoid 22

References .. 25

2 General Properties of the Morse–Smale Diffeomorphisms 27
 2.1 Embedding and Asymptotic Behavior of the Invariant
 Manifolds of Periodic Points ... 27
 2.1.1 Representation of the Ambient Manifold
 as the Unit of the Invariant Manifolds
 of the Periodic Points ... 31
 2.1.2 Embedding of Invariant Manifolds of Periodic
 Points into the Ambient Manifold 32
 2.1.3 Topological Invariants Related to the Embedding
 of the Invariant Manifolds of the Periodic Points
 into the Ambient Manifold 35
 2.1.4 A Linearizing Neighborhood 40
 2.1.5 The Asymptotic Behavior of the Invariant Manifolds
 of the Periodic Points .. 44
 2.2 Morse–Lyapunov Functions. Attractors and Repellers 46
 2.2.1 “Source-Sink” Diffeomorphisms 49
 2.2.2 Morse–Lyapunov Functions 50
 2.2.3 Attractors and Repellers 51

References .. 54
3 The Topological Classification of the Gradient-Like Diffeomorphism on Surfaces .. 57
 3.1 The Realization of the Gradient-Like Diffeomorphisms by Means of Periodic Transformations 57
 3.1.1 The Structure of the Periodic Data of a Gradient-Like Diffeomorphism on a Surface 60
 3.1.2 Periodic Transformations and Their Connection to the Periodic Data 62
 3.1.3 The Construction of the Gradient-Like Diffeomorphism for the Admissible Collection 62
 3.2 The Topological Classification of the Gradient-Like Diffeomorphisms .. 65
 3.2.1 The Connection Between the Graph and the Scheme ... 70
 3.2.2 Sufficient Conditions of the Topological Conjugacy ... 72
References .. 74

4 Wild Embedding of the Separatrices into 3-Manifolds and Pixton Diffeomorphism .. 77
 4.1 Embedding to a Manifold Whose Fundamental Group Admits a Nontrivial Homomorphism into the Group \mathbb{Z} ... 78
 4.1.1 Properties of the $\eta_{S^2 \times S^1}$-Essential Torus .. 80
 4.1.2 The Criterion of Triviality of the $\eta_{S^2 \times S^1}$-Essential Knot (Torus) 81
 4.2 Embedding of Separatrices to a 3-Manifold 82
 4.2.1 The Behavior of the Tame Separatrix in a Neighborhood of a Sink 84
 4.2.2 The Criterion of Tame Embedding of Separatrices to a 3-Manifold 86
 4.3 Pixton Diffeomorphisms ... 87
 4.3.1 Topological Classification ... 88
 4.3.2 Bifurcation of the Embedding of a Separatrix of a Saddle Fixed Point 95
References.. 106

5 The Classification of the Gradient-Like Diffeomorphisms on 3-Manifolds .. 109
 5.1 A Compatible System of Neighborhoods 109
 5.2 The Necessary and Sufficient Conditions of Topological Conjugacy ... 114
References.. 118
6 Interrelation Between the Dynamics of Morse–Smale Diffeomorphisms and the Topology of the Ambient 3-Manifold ... 119

6.1 The Classification of 3-Manifolds Admitting Morse–Smale Diffeomorphisms Without Heteroclinic Curves 119

6.1.1 The Topological Structure of a Neighborhood of a Wild Sphere .. 120

6.1.2 Decomposition of 3-Manifolds into the Connected Sum .. 123

6.2 The Heegaard Splitting of the Ambient 3-Manifold of a Gradient-Like Diffeomorphism 127

6.2.1 The Structure of a Neighborhood of the Attractor \(A_f\) (the Repeller \(R_f\)) 128

6.2.2 The Heegaard Splitting of the Ambient 3-Manifold for a Gradient-Like Diffeomorphism 129

References .. 130

7 An Energy Function for Morse–Smale Diffeomorphisms on 3-Manifolds .. 131

7.1 Morse–Lyapunov Function ... 132

7.1.1 Properties of Lyapunov Functions ... 133

7.1.2 Genericity of Morse–Lyapunov Functions 136

7.2 A Dynamically Ordered Energy Function 137

7.2.1 The Necessary Conditions of Existence 139

7.2.2 The Construction of an Energy Function 141

7.2.3 The Criterion of the Existence of an Energy Function on the 3-Sphere 146

References .. 147

8 The Properties of Nontrivial Basic Sets of A-Diffeomorphisms Related to Type and Dimension 149

8.1 Nontrivial Attractors and Repellers of A-Diffeomorphisms 149

8.1.1 The Conditions that Single Out Attractors and Repellers Among Basic Sets 150

8.1.2 The Local Structure of an Expanding Attractor (A Contracting Repeller) 153

8.2 Basic Sets of Types \((n - 1, 1)\) and \((1, n - 1)\) 153

8.2.1 The Examples of Basic Sets of Types \((n - 1, 1)\) and \((1, n - 1)\) .. 155

8.2.2 The Behavior of the 1-Dimensional Stable (Unstable) Manifolds of Basic Sets of Types \((n - 1, 1)\) and \((1, n - 1)\). The Existence of the Boundary Points .. 160

References .. 164

9 The Classification of Nontrivial Basic Sets of \(A \)-Diffeomorphisms of Surfaces .. 167

9.1 The Asymptotic Behavior of the Preimages of the Stable and the Unstable Manifolds of the Points of Widely Situated Basic Sets on a Universal Cover 168

9.1.1 The Construction of a Quasitransversal 170

9.1.2 The Case of a Surface of Negative Euler Characteristic .. 171

9.1.3 The Case of the 2-Torus 174

9.2 The Classification of Two-Dimensional Basic Sets 180

9.2.1 \(A \)-Diffeomorphisms with a Two-Dimensional Basic Set on a Surface ... 181

9.2.2 The Classification of Anosov Diffeomorphisms of the 2-Torus .. 182

9.3 The Classification of One-Dimensional Basic Sets 185

9.3.1 The Construction of the Canonical Form of an Attractor ... 190

9.3.2 The Asymptotic Behavior of the Preimages of the Stable and the Unstable Manifolds of the Points of an Attractor on the Universal Covering Space of the Canonical Support 193

9.3.3 The Proof of the Classification Theorem 198

9.3.4 Hyperbolicity of the Automorphism of the Fundamental Group of the Support 203

9.3.5 The Representation of 1-Dimensional Attractors by Geodesic Laminations 204

9.3.6 Separability of a One-Dimensional Attractor (Repeller) of a Structurally Stable Diffeomorphism of a Surface .. 207

9.4 The Classification of 1-Dimensional Widely Situated Attractors of Diffeomorphisms of the Torus \(T^2 \) 208

9.4.1 Properties of a Lift of the Semi-conjugacy 209

9.4.2 The Necessary and Sufficient Conditions of the Topological Conjugacy 212

9.5 The Classification of Zero-Dimensional Basic Sets Without Pairs of Conjugated Points 213

References .. 216

10 Basic Topological Concepts of Dynamical Systems 217

10.1 Groups. Linear and Metric Spaces 217

10.1.1 Sets and Maps .. 217

10.1.2 Groups ... 219

10.1.3 Linear Space ... 222

10.1.4 Metric Spaces ... 224
10.2 Basics of the Algebraic Topology .. 226
 10.2.1 Topological Spaces ... 226
 10.2.2 Factor Topology ... 231
 10.2.3 Compactness ... 236
 10.2.4 Hausdorff Spaces ... 237
 10.2.5 Connectedness and Path-Connectedness 237
 10.2.6 Fundamental Group ... 239
 10.2.7 Calculation of Fundamental Groups 240

10.3 Manifolds and Maps .. 244
 10.3.1 Manifolds .. 244
 10.3.2 Homology Groups .. 247
 10.3.3 Surfaces .. 251
 10.3.4 Smooth Structures ... 253
 10.3.5 Submanifolds, Immersions, Submersions,
 Embeddings .. 256
 10.3.6 Tangent Spaces. Vector Fields 258
 10.3.7 Spaces of Maps ... 263
 10.3.8 Isotopy .. 265

10.4 Wild Embeddings. Theory of Surfaces 267
 10.4.1 Wild Embeddings .. 267
 10.4.2 Some Important Properties of Maps 270
 10.4.3 Embedding of a Surface into a 3-Manifold 271
 10.4.4 Morse Function ... 272
 10.4.5 Laminations and Foliations 276
 10.4.6 Homotopy Properties of Surface Homeomorphisms 279

References .. 285

Index ... 287
Dynamical Systems on 2- and 3-Manifolds
Grines, V.Z.; Medvedev, T.V.; Pochinka, O.V.
2016, XXVI, 295 p. 95 illus., Hardcover
ISBN: 978-3-319-44846-6