Contents

1 Water Resources Planning and Management: An Overview 1
 1.1 Introduction ... 1
 1.2 Planning and Management Issues: Some Case Studies 2
 1.2.1 Kurds Seek Land, Turks Want Water. 3
 1.2.2 Sharing the Water of the Jordan River Basin: Is There a Way? 5
 1.2.3 Mending the “Mighty and Muddy” Missouri 6
 1.2.4 The Endangered Salmon 8
 1.2.5 Wetland Preservation: A Groundswell of Support and Criticism 10
 1.2.6 Lake Source Cooling: Aid to Environment, or Threat to Lake? 10
 1.2.7 Managing Water in the Florida Everglades 12
 1.2.8 Restoration of Europe’s Rivers and Seas 14
 1.2.9 Flood Management on the Senegal River 19
 1.2.10 Nile Basin Countries Striving to Share Its Benefits 20
 1.2.11 Shrinking Glaciers at Top of the World 22
 1.2.12 China, a Thirsty Nation 22
 1.2.13 Managing Sediment in China’s Yellow River 23
 1.2.14 Damming the Mekong (S.E. Asia), the Amazon, and the Congo 23
 1.3 So, Why Plan, Why Manage? 28
 1.3.1 Too Little Water 30
 1.3.2 Too Much Water 31
 1.3.3 Too Polluted 31
 1.3.4 Too Expensive 32
 1.3.5 Ecosystem Too Degraded 32
 1.3.6 Other Planning and Management Issues 33
 1.4 System Planning Scales 33
 1.4.1 Spatial Scales for Planning and Management 33
 1.4.2 Temporal Scales for Planning and Management 34
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>An Introduction to Optimization Models and Methods</td>
<td>4.1 Introduction, 4.2 Comparing Time Streams of Economic Benefits and Costs, 4.2.1 Interest Rates, 4.2.2 Equivalent Present Value, 4.2.3 Equivalent Annual Value, 4.3 Nonlinear Optimization Models and Solution Procedures, 4.3.1 Solution Using Calculus, 4.3.2 Solution Using Hill Climbing, 4.3.3 Solution Using Lagrange Multipliers, 4.4 Dynamic Programming, 4.4.1 Dynamic Programming Networks and Recursive Equations, 4.4.2 Backward-Moving Solution Procedure, 4.4.3 Forward-Moving Solution Procedure, 4.4.4 Numerical Solutions, 4.4.5 Dimensionality, 4.4.6 Principle of Optimality, 4.4.7 Additional Applications, 4.4.8 General Comments on Dynamic Programming, 4.5 Linear Programming, 4.5.1 Reservoir Storage Capacity-Yield Models, 4.5.2 A Water Quality Management Problem, 4.5.3 A Groundwater Supply Example, 4.5.4 A Review of Linearization Methods, 4.6 A Brief Review</td>
</tr>
<tr>
<td>5</td>
<td>Data-Fitting, Evolutionary, and Qualitative Modeling</td>
<td>5.1 Introduction, 5.2 Artificial Neural Networks, 5.2.1 The Approach, 5.2.2 An Example, 5.3 Evolutionary Algorithms, 5.3.1 Genetic Algorithms, 5.3.2 Example Iterations, 5.3.3 Differential Evolution, 5.3.4 Covariance Matrix Adaptation Evolution Strategy, 5.4 Genetic Programming, 5.5 Qualitative Functions and Modeling, 5.5.1 Linguistic Functions, 5.5.2 Membership Functions, 5.5.3 Illustrations of Qualitative Modeling</td>
</tr>
</tbody>
</table>
6 An Introduction to Probability, Statistics, and Uncertainty

6.1 Introduction

6.2 Probability Concepts and Methods
- 6.2.1 Random Variables and Distributions
- 6.2.2 Expected Values
- 6.2.3 Quantiles, Moments, and Their Estimators
- 6.2.4 L-Moments and Their Estimators

6.3 Distributions of Random Events
- 6.3.1 Parameter Estimation
- 6.3.2 Model Adequacy
- 6.3.3 Normal and Lognormal Distributions
- 6.3.4 Gamma Distributions
- 6.3.5 Log-Pearson Type 3 Distribution
- 6.3.6 Gumbel and GEV Distributions
- 6.3.7 L-Moment Diagrams

6.4 Analysis of Censored Data

6.5 Regionalization and Index-Flood Method

6.6 Partial Duration Series

6.7 Stochastic Processes and Time Series
- 6.7.1 Describing Stochastic Processes
- 6.7.2 Markov Processes and Markov Chains
- 6.7.3 Properties of Time Series Statistics

6.8 Synthetic Streamflow Generation
- 6.8.1 Introduction
- 6.8.2 Streamflow Generation Models
- 6.8.3 A Simple Autoregressive Model
- 6.8.4 Reproducing the Marginal Distribution
- 6.8.5 Multivariate Models
- 6.8.6 Multiseason, Multisite Models

6.9 Stochastic Simulation
- 6.9.1 Generating Random Variables
- 6.9.2 River Basin Simulation
- 6.9.3 The Simulation Model
- 6.9.4 Simulation of the Basin
- 6.9.5 Interpreting Simulation Output

6.10 Conclusions

7 Modeling Uncertainty

7.1 Introduction

7.2 Generating Values from Known Probability Distributions

7.3 Monte Carlo Simulation
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Chance Constrained Models</td>
<td>306</td>
</tr>
<tr>
<td>7.5</td>
<td>Markov Processes and Transition Probabilities</td>
<td>308</td>
</tr>
<tr>
<td>7.6</td>
<td>Stochastic Optimization</td>
<td>311</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Probabilities of Decisions</td>
<td>316</td>
</tr>
<tr>
<td>7.6.2</td>
<td>A Numerical Example</td>
<td>317</td>
</tr>
<tr>
<td>7.7</td>
<td>Summary</td>
<td>327</td>
</tr>
<tr>
<td>8</td>
<td>System Sensitivity and Uncertainty Analysis</td>
<td>331</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>331</td>
</tr>
<tr>
<td>8.2</td>
<td>Issues, Concerns, and Terminology</td>
<td>332</td>
</tr>
<tr>
<td>8.3</td>
<td>Variability and Uncertainty in Model Output</td>
<td>334</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Natural Variability</td>
<td>336</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Knowledge Uncertainty</td>
<td>337</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Decision Uncertainty</td>
<td>338</td>
</tr>
<tr>
<td>8.4</td>
<td>Sensitivity and Uncertainty Analyses</td>
<td>339</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Uncertainty Analyses</td>
<td>339</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Sensitivity Analyses</td>
<td>344</td>
</tr>
<tr>
<td>8.5</td>
<td>Performance Indicator Uncertainties</td>
<td>362</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Performance Measure Target Uncertainty</td>
<td>362</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Distinguishing Differences Between Performance Indicator Distributions</td>
<td>366</td>
</tr>
<tr>
<td>8.6</td>
<td>Communicating Model Output Uncertainty</td>
<td>367</td>
</tr>
<tr>
<td>8.7</td>
<td>Conclusions</td>
<td>370</td>
</tr>
<tr>
<td>8.8</td>
<td>References</td>
<td>371</td>
</tr>
<tr>
<td>8.9</td>
<td>Exercises</td>
<td>373</td>
</tr>
<tr>
<td>9</td>
<td>Performance Criteria</td>
<td>375</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>375</td>
</tr>
<tr>
<td>9.2</td>
<td>Informed Decision-Making</td>
<td>376</td>
</tr>
<tr>
<td>9.3</td>
<td>Performance Criteria and General Alternatives</td>
<td>377</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Constraints on Decisions</td>
<td>378</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Tradeoffs Among Performance Criteria</td>
<td>379</td>
</tr>
<tr>
<td>9.4</td>
<td>Quantifying Performance Criteria</td>
<td>380</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Economic Criteria</td>
<td>380</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Environmental Criteria</td>
<td>389</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Ecological Criteria</td>
<td>389</td>
</tr>
<tr>
<td>9.4.4</td>
<td>Social Criteria</td>
<td>392</td>
</tr>
<tr>
<td>9.5</td>
<td>Multicriteria Analyses</td>
<td>393</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Dominance</td>
<td>394</td>
</tr>
<tr>
<td>9.5.2</td>
<td>The Weighting Method</td>
<td>395</td>
</tr>
<tr>
<td>9.5.3</td>
<td>The Constraint Method</td>
<td>396</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Satisficing</td>
<td>398</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Lexicography</td>
<td>398</td>
</tr>
<tr>
<td>9.5.6</td>
<td>Indifference Analysis</td>
<td>399</td>
</tr>
<tr>
<td>9.5.7</td>
<td>Goal Attainment</td>
<td>400</td>
</tr>
</tbody>
</table>
9.5.8 Goal Programming 401
9.5.9 Interactive Methods 402
9.5.10 Plan Simulation and Evaluation 402
9.6 Statistical Summaries of Performance Criteria ... 407
 9.6.1 Reliability 409
 9.6.2 Resilience 409
 9.6.3 Vulnerability 409
9.7 Conclusions 410
References ... 411
Exercises ... 411

10 Water Quality Modeling and Prediction ... 417
 10.1 Introduction 417
 10.2 Establishing Ambient Water Quality Standards .. 418
 10.2.1 Water Use Criteria 419
 10.3 Water Quality Model Use .. 420
 10.3.1 Model Selection Criteria 421
 10.3.2 Model Chains 422
 10.3.3 Model Data 423
 10.4 Models of Water Quality Processes .. 425
 10.4.1 Mass Balance Principles 425
 10.4.2 Steady-State Models 428
 10.4.3 Design Streamflows for Setting and Evaluating Quality Standards 430
 10.4.4 Temperature 432
 10.4.5 Sources and Sinks 433
 10.4.6 First-Order Constituents 433
 10.4.7 Dissolved Oxygen 433
 10.4.8 Nutrients and Eutrophication 437
 10.4.9 Toxic Chemicals 441
 10.4.10 Sediments 446
 10.4.11 Processes in Lakes and Reservoirs 446
 10.5 Simulation Methods .. 452
 10.5.1 Numerical Accuracy 452
 10.5.2 Traditional Approach 453
 10.5.3 Backtracking Approach 455
 10.5.4 Model Uncertainty 457
 10.6 Conclusions—Implementing a Water Quality Management Policy 458
References ... 459
Exercises ... 462

11 River Basin Modeling ... 469
 11.1 Introduction 469
 11.2 Model Time Periods .. 470
 11.3 Streamflow Estimation ... 471
 11.4 Streamflow Routing .. 472
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5</td>
<td>Lakes and Reservoirs</td>
<td>473</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Estimating Active Storage Capacity</td>
<td>474</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Reservoir Storage-Yield Functions</td>
<td>476</td>
</tr>
<tr>
<td>11.5.3</td>
<td>Evaporation Losses</td>
<td>478</td>
</tr>
<tr>
<td>11.5.4</td>
<td>Over- and Within-Year Reservoir Storage and Yields</td>
<td>479</td>
</tr>
<tr>
<td>11.6</td>
<td>Drought and Flood Risk Reduction</td>
<td>489</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Drought Planning and Management</td>
<td>489</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Flood Protection and Damage Reduction</td>
<td>490</td>
</tr>
<tr>
<td>11.7</td>
<td>Hydroelectric Power Production</td>
<td>502</td>
</tr>
<tr>
<td>11.8</td>
<td>Withdrawals and Diversions</td>
<td>504</td>
</tr>
<tr>
<td>11.9</td>
<td>Lake-Based Recreation</td>
<td>505</td>
</tr>
<tr>
<td>11.10</td>
<td>Model Synthesis</td>
<td>506</td>
</tr>
<tr>
<td>11.11</td>
<td>Project Scheduling</td>
<td>511</td>
</tr>
<tr>
<td>11.12</td>
<td>Conclusions</td>
<td>515</td>
</tr>
<tr>
<td>References</td>
<td>515</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>516</td>
<td></td>
</tr>
</tbody>
</table>

12 **Urban Water Systems** | 527 |
12.1	Introduction	527
12.2	Water Treatment	529
12.3	Water Distribution	531
12.3.1	Open-Channel Networks	533
12.3.2	Pressure Pipe Networks	533
12.3.3	Water Quality	535
12.4	Wastewater Collection	536
12.4.1	Sewer Networks	536
12.5	Wastewater Treatment	537
12.6	Urban Drainage Systems	539
12.6.1	Rainfall	539
12.6.2	Runoff	541
12.6.3	Surface Pollutant Loading and Washoff	549
12.6.4	Water Quality Impacts	553
12.6.5	Green Urban Infrastructure	558
12.7	Urban Water System Modeling	558
12.7.1	Optimization	558
12.7.2	Simulation	560
12.8	Conclusions	561
References	561	
Exercises	564	

13 **Project Planning: Putting It All Together** | 567 |
13.1	Water Management Challenges	567
13.2	Water Resources System Components, Functions, and Decisions	568
13.2.1	Components	568
13.2.2	Functions	569
13.2.3	Goals, Strategies, Decisions, and Scenarios	570
13.2.4	Systems Approaches to WRS Planning and Decision Making	571
13.3 Conceptual Description of WRS 572
 13.3.1 Characteristics of the Natural Resources System 573
 13.3.2 Characteristics of the Socioeconomic System 574
 13.3.3 Characteristics of the Administrative and Institutional System 575

13.4 Framework for Analysis and Implementation 576
 13.4.1 Step I—Inception Phase 579
 13.4.2 Step II—Situation Analysis 584
 13.4.3 Step III—Strategy Building 592
 13.4.4 Steps IV and V—Action Planning and Implementation 596

13.5 Making It Work .. 600
 13.5.1 Stakeholder Engagement 600
 13.5.2 Using Models in a Planning Process 605

13.6 Conclusions .. 609

References ... 614

Index ... 617
Water Resource Systems Planning and Management
An Introduction to Methods, Models, and Applications
Loucks, D.P.; van Beek, E.
2017, XX, 624 p. 363 illus., 356 illus. in color., Hardcover
ISBN: 978-3-319-44232-7