Contents

1 Introduction ... 1
 References ... 4

2 Bandwidth-Efficient Modulation with Frequency Division Multiple Access (FDMA) ... 5
 2.1 Introduction ... 5
 2.2 Definition of Energy and Spectral Efficiency 7
 2.2.1 Bandwidth or Spectrum Efficiency 8
 2.2.2 Energy Efficiency .. 11
 2.3 Fundamentals of Modulation 15
 2.3.1 The Convolution Property 15
 2.3.2 Modulation Property 16
 2.4 Digital Baseband Modulation 18
 2.4.1 2-Level Pulse Amplitude Modulation (2-PAM) and Binary Phase Shift Keying (BPSK) 19
 2.4.2 Quadrature Amplitude Modulation (QAM) and Quadrature Phase Shift Keying (QPSK) 20
 2.4.3 Power Spectral Density of Baseband Signals 24
 2.4.4 Non-Overlapped Pulse Waveform Modulation 26
 2.5 Overlapped Pulse-Shaping Modulation 28
 2.5.1 Overlapped Raised-Cosine Pulse-Shaping Modulation ... 29
 2.5.2 IJF-OQPSK Modulation 33
 2.5.3 Other Overlapped Pulse-Shaping Modulations 35
 2.5.4 Bit Error Rate in Coherent Demodulation 40
 2.6 Minimum Bandwidth and ISI-free Nyquist Pulse Shaping 44
 2.6.1 Nyquist Minimum Transmission Bandwidth with ISI-Free ... 44
 2.6.2 Analog Filter Approximation to SRRC Filter 54
3 Bandwidth-Efficient Modulation With OFDM

3.1 Introduction

3.2 Generation of the 802.11a OFDM Signal

- 3.2.1 Preamble Field
- 3.2.2 Signal Field
- 3.2.3 Data Field
- 3.2.4 Spectral Side-Lobe Reduction With Windowing
- 3.2.5 RF Transmitter Description
- 3.2.6 Peak-to-Average Power Ratio (PAPR)

3.3 Synchronization of 802.11a OFDM Signal

- 3.3.1 Symbol Timing Synchronization
- 3.3.2 Carrier Frequency Synchronization
- 3.3.3 Channel Estimation Technique

3.4 Design Challenges for RF Transceivers

- 3.4.1 RF Transceiver
- 3.4.2 Digital Baseband and MAC Processor
- 3.4.3 Radio Front-End Modules

3.5 Design Applications

- 3.5.1 Marvell’s WLAN 802.11ac Transceiver
- 3.5.2 MediaTek’s 802.11a/b/g/n/ac WLAN SoC

4 Energy and Bandwidth-Efficient Modulation

4.1 Introduction

4.2 Constant Envelope Modulation of Minimum Shift Keying

4.3 Constant Envelope Modulation of GMSK

- 4.3.1 VCO-Based GMSK Modulation
- 4.3.2 Quadrature Architecture of GMSK

4.4 Nearly Constant Envelope Modulation of FQPSK

- 4.4.1 XPSK Modulation
- 4.4.2 FQPSK-B

4.5 Coherent Demodulation

- 4.5.1 Adaptive Equalization
- 4.5.2 Coherent Detection

4.6 RF Transmitter Architectures for GMSK

- 4.6.1 System Specifications of Quad-Band GSM Transmitter
- 4.6.2 Mixer-Based Frequency Up-Conversion
- 4.6.3 Phase-Locked Loop-Based Frequency Up-Conversion

References

- References for Section 2.6.3: Digital Filter Approximation to Raised-Cosine Filter
- References for Section 2.6.4: Amplitude Compensation for a SINC Function
- References for Section 3: Bandwidth-Efficient Modulation With OFDM
- References for Section 4: Energy and Bandwidth-Efficient Modulation

5 Linearization Techniques for RF Power Amplifiers
5.1 Introduction
5.2 Memory Model of Power Amplifiers
5.3 Behavioral Modeling of a Practical Power Amplifier
5.4 Power Amplifier Linearization
 5.4.1 Digital Baseband Pre-distortion
 5.4.2 RF Analog Pre-distortion
 5.4.3 Coefficient Adaptation of Analog Pre-distortion
5.5 Applications
 5.5.1 Maxim’s RF Pre-distortion Technique
References

6 Transceiver I: Transmitter Architectures
6.1 Introduction
6.2 Brief Description of Cellular and WLAN Systems
6.3 Superheterodyne Transmitter
6.4 Direct up-Conversion Transmitter
6.5 Transmission Impairments
 6.5.1 I–Q Gain and Phase Imbalances and DC Offsets
 6.5.2 LO Leakage
 6.5.3 VCO Phase-Noise Disturbance
 6.5.4 Nonlinearity of Power Amplifier
References

7 Transceiver II: Receiver Architectures
7.1 Introduction
7.2 Heterodyne Receiver
 7.2.1 Image Rejection
7.3 Low-IF Receiver and Zero-IF Receiver
 7.3.1 Image Rejection in the Low-IF Receiver
 7.3.2 Image Rejection in Zero-IF Receiver
7.4 Receiver Impairments
 7.4.1 I–Q Imbalance Compensation
 7.4.2 DC Offset Cancellation
 7.4.3 Nonlinear Distortion
7.5 Channel Selection Filtering
 7.5.1 Channel Selection Filtering With Partition
 7.5.2 Channel Selection Filtering in the Analog Domain
7.6 Automatic Gain Control
 7.6.1 Receiver Sensitivity
 7.6.2 Receiver Dynamic Range and Total Analog Gain
 7.6.3 AGC Setting Strategy
References
Applications for RF Transceiver ICs

8.1 Introduction .. 405

8.2 Cellular Communication Transceivers 406
 8.2.1 2G GSM Transceivers 407
 8.2.2 3G WCDMA Transceivers 412

8.3 WLAN Transceivers .. 418
 8.3.1 Broadcom’s WLAN Transceiver 419
 8.3.2 Atheros’ WLAN 802.11n Transceiver 421

References .. 423

Tutorial Appendices .. 425

References .. 473

Index ... 475
Energy and Bandwidth-Efficient Wireless Transmission
Gao, W.
2017, XXIII, 485 p. 268 illus., 55 illus. in color.,
Hardcover
ISBN: 978-3-319-44220-4