Contents

1 The Theoretical Basis of the Low-Temperature Plasma 1
1.1 The Basic Approaches to the Description of Plasma 1
 1.1.1 The Plasma Relations for the Full Thermodynamic Equilibrium 4
 1.1.2 The Model of Local Thermodynamic Equilibrium in Plasma 7
 1.1.3 The Model of Partial Local Thermodynamic Equilibrium in Plasma 8
1.2 Model of Equilibrium Plasma 11
 1.2.1 The Energy Balance Equation .. 12
 1.2.2 The Momentum Equations of the Plasma Flow 13
 1.2.3 The Continuity Equation of the Plasma Flow 14
 1.2.4 The Maxwell’s Equations .. 14
 1.2.5 The Equations of Equilibrium Plasma Model in a Cylindrical Coordinate System 15
1.3 The Two-Temperature Model of Nonequilibrium Plasma 18
 1.3.1 The Violation of Ionization Equilibrium in Plasma.
 Equation of Ionization Equilibrium .. 23
1.4 The Two-Speed Plasma Model 25
1.5 Gas Dynamic Models of Plasma Turbulence 26
 1.5.1 The Reynolds-Averaged Navier–Stokes Equations 27
 1.5.2 The Main Gas Dynamic Model of Turbulence 31
1.6 Models of Light Emission and Absorption in Plasma 36
 1.6.1 Radiation in the Continuous Spectrum 37
 1.6.2 Absorption in the Continuum .. 42
 1.6.3 Radiation in the Spectral Lines 45
 1.6.4 The Absorption in Spectral Lines 49
References .. 50
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Classical Theory of the Particle Scattering</td>
<td>53</td>
</tr>
<tr>
<td>2.1</td>
<td>Classical Consideration of the Particle Scattering</td>
<td>53</td>
</tr>
<tr>
<td>2.2</td>
<td>Determination of Cross Sections for Plasma Particles Interaction</td>
<td>59</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Coulomb Scattering: The Cross Section of the Interaction of Charged Particles</td>
<td>59</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Ramseur Effect and the Resonance Scattering of the Electrons by Atoms</td>
<td>64</td>
</tr>
<tr>
<td>2.2.3</td>
<td>The Cross Sections for the Interaction of Molecule–Molecule, Atom–Atom</td>
<td>65</td>
</tr>
<tr>
<td>2.2.4</td>
<td>The Cross Sections for the Interaction of the Atom–Ion</td>
<td>66</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>Quantum Mechanical Theory of the Particle Scattering</td>
<td>71</td>
</tr>
<tr>
<td>3.1</td>
<td>The Schrödinger Equation</td>
<td>71</td>
</tr>
<tr>
<td>3.2</td>
<td>Solution of the Schrödinger Equation for the Elastic Interactions</td>
<td>74</td>
</tr>
<tr>
<td>3.3</td>
<td>Determination of the Phase Shift</td>
<td>78</td>
</tr>
<tr>
<td>3.4</td>
<td>Born Approximation for Calculating the Amplitudes of the Scattered Waves</td>
<td>81</td>
</tr>
<tr>
<td>3.5</td>
<td>Determination of Differential and Total Cross Sections of Elastic Interactions</td>
<td>85</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>Determination of the Composition, Thermodynamic Properties, and Transport Coefficients on the Basis of the Mean Free Path</td>
<td>93</td>
</tr>
<tr>
<td>4.1</td>
<td>The Plasma Composition</td>
<td>93</td>
</tr>
<tr>
<td>4.2</td>
<td>Thermodynamic Properties of the Plasma</td>
<td>98</td>
</tr>
<tr>
<td>4.3</td>
<td>Transport Coefficients of the Plasma</td>
<td>102</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Determination of the Electrical Conductivity and Thermal Conductivity</td>
<td>103</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Determination of the Viscosity, the Ambipolar Diffusion Coefficient, and Integrated Emission</td>
<td>108</td>
</tr>
<tr>
<td>4.4</td>
<td>The Coefficients of Triple Recombination and Impact Ionization</td>
<td>114</td>
</tr>
<tr>
<td>4.5</td>
<td>The Frequency of Particle Collisions, the Current Density, and Heating Capacity of Plasma</td>
<td>117</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>The Boltzmann Kinetic Equation and Calculation of the Transport Coefficients</td>
<td>123</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction of the Boltzmann Kinetic Equation</td>
<td>123</td>
</tr>
<tr>
<td>5.2</td>
<td>The Transport Equations</td>
<td>126</td>
</tr>
</tbody>
</table>
5.2.1 Principle of the Equilibrium Systems 130

5.3 Solution of the Boltzmann Kinetic Equation by Chapman–Enskog Approach .. 132

5.4 Determination of Viscosity .. 139

5.4.1 Determination of the Elements in the Bracket Integral \{B, B\} by Sonine Polynomials 141

5.4.2 The Bracket Integrals ... 143

5.5 Determination the Coefficients of Diffusion, Thermal Diffusion, and Thermal Conductivity 146

5.5.1 Calculation of Diffusion and Thermal Diffusion Coefficients ... 146

5.5.2 Determination of the Heat Flow 147

5.5.3 Defining Elements of the Bracket Integrals \{\mathbf{A}, \mathbf{A}\} and \{\mathbf{A}, \mathbf{D}\} Using the Sonine Polynomials 148

5.5.4 The Bracket Integrals ... 151

5.6 Determination of the Electrical Conductivity 156

References ... 157

6 Numerical Methods of the Plasma Physics 159

6.1 Basis of the Numerical Methods of the Plasma Physics 159

6.1.1 Solution of the Generalized Differential Equation 159

6.1.2 Solution of the Momentum Equations and the Continuity Equation of the Gas Flux 171

6.1.3 Conversion of Different Equations in Generalized Form ... 180

6.2 The Stability of the Difference Methods and Computational Procedures .. 184

6.2.1 Stability of Difference Methods 184

6.2.2 Analysis of the Computational Procedures Stability 187

6.3 The Structural Organization of Computational Procedures 191

6.3.1 The External Feedback in the Structure of Computational Procedures .. 191

6.3.2 Installing Internal Feedback in the Computational Procedures .. 192

6.3.3 The Mathematical Algorithms with Internal Feedback ... 197

6.3.4 The Stability Region of the Computational Procedures of Plasma Processes .. 200

References ... 202

7 The RF Plasma Torches ... 205

7.1 Characteristics of the RF Plasma Torches 205

7.2 Electromagnetic Field in the RF Plasma Torches 214

7.2.1 Equation of the Vector Potential and Its Solution 219
10.1.1 The Criteria of Heat Transfer and Gas Dynamics of Particles 401
10.1.2 The Non-gradient Heating and Movement of the Particles in the Plasma 403
10.1.3 The Gradient Heating Particles in the Plasma 407
10.1.4 Evaporation of Particles in the Plasma 410
10.2 Calculation of the Heating and Movement of the Particles with the Given Parameters of the Plasma Flow 415
10.2.1 Installation for Plasma Treatment of Powder Materials 415
10.2.2 Solution for Equations of the Heating and Movement Particles 418
10.3 The Model of Plasma, Loaded the Flow of Solid Particles 425
References .. 430

11 The Features of the Experimental Methods and Automated Diagnostic Systems of RF and Arc Plasma Torches 431
11.1 The Experimental Setup and Automated Diagnostic System for the Study of the RF and Arc Plasma Torches .. 431
11.1.1 Adjusting Elements in Optical System 435
11.2 The Basic Methods of the Plasma Diagnostics 438
11.3 Measurements of Plasma Parameters in the RF and Arc Plasma Torches 449
References .. 458

Erratum to: Classical Theory of the Particle Scattering E1
Appendix A .. 459
Appendix B .. 465
Appendix C .. 469
Appendix D .. 479
Appendix E .. 481
Index .. 495
Theory of Low-Temperature Plasma Physics
Nguyen-Kuok, S.
2017, XV, 495 p. 253 illus., Hardcover
ISBN: 978-3-319-43719-4