Contents

1 Renewable Energy Sources—Overview .. 1
 1.1 Development of RES in Europe ... 2
 1.2 Utilization of Different Sources of Electrical Energy in the Various Countries of the European Union 8
 1.3 The Proportion of Energy Obtained with the Use of RES in the Consumption of Various Sectors 13
 1.4 Wind Power Plants ... 19
 1.5 Photovoltaic Power Plants ... 25
 1.6 Conditions for Connecting RESs (Wind, Solar) 31
 1.6.1 Voltage Increase .. 34
 1.6.2 Voltage Changes Due to Switching 36
 1.6.3 Connection of Plants with Inverters or Frequency Convertors ... 37
 1.6.4 Special Requirements for the Plants with RESs 39
References ... 41

2 Systems and Equipment of Wind Power Plants 43
 2.1 Micro and Small Wind Power Plants 44
 2.1.1 Start of the Excited Generator 49
 2.1.2 Connecting of the Induction Generator to the Distribution External Grid .. 50
 2.1.3 Connecting the Non-excited Generator to the External Grid ... 51
 2.1.4 Instantaneous Disconnection of the Generator from the External Grid .. 52
 2.1.5 Connecting Capacitors to the Running Generator 53
 2.1.6 Load Changes .. 54
 2.1.7 The Effect of Terminal Voltage Changes During Cooperation with the External Grid 54
 2.1.8 Induction Generator of the Wind Power Plant in the Autonomous Mode ... 56
2.2 Medium Wind Power Plants 59
 2.2.1 Generators of Medium Wind Power Plants 64
2.3 Large Wind Power Plants 82
 2.3.1 Control Systems for High-Capacity Wind Power Plants 84
 2.3.2 WPP Control System Cooperating with Frequency Converters 84
 2.3.3 Switching the Wind Power Plant in the External Grid . . 86
 2.3.4 Comparison of Different Systems of Wind Power Plants 88
2.4 Reactive Power Regulation 94
 2.4.1 Selected Reverse Effects on the External Grid 95
 2.4.2 Influence of the WPP Operation on the Substation Supply Systems 102
References .. 105

3 Operating Characteristics of Photovoltaic Power Plants 107
 3.1 Development of PPP Components 107
 3.1.1 The First Generation 107
 3.1.2 The Second Generation 108
 3.1.3 The Third Generation 108
 3.2 Basic Operating Characteristics of PPPs 109
 3.2.1 PPP Power Curve 109
 3.2.2 Production, Utilization Ratio, Efficiency, and Power Flows 112
 3.3 PPP Operating States ... 115
 3.3.1 PQ Diagram ... 115
 3.4 Power Flow Variability and Its Impact on the System 119
 3.5 PPP Negative Effect on the Distribution System 123
 3.6 Prediction Methods for PPP Power Output Prediction 125
 3.6.1 The General Principle for Predicting the Production of Electricity from PPPs 125
 3.6.2 The Source of Solar Radiation 125
 3.6.3 A Decrease in Radiation Energy Due to Passage Through the Atmosphere 125
 3.6.4 Losses Due to Conversion in the Photovoltaic Cell 128
 3.6.5 Methods for Predicting the Production of Electricity from PPPs 129
 3.6.6 Solar Databases .. 129
 3.6.7 The European Solar Radiation Atlas (ESRA) 130
 3.6.8 HelioClim .. 131
 3.6.9 Satel-Light .. 131
 3.6.10 Nasa SSE .. 131
 3.6.11 SWERA .. 132
 3.6.12 SOLEMI ... 132
3.6.13 METEONORM .. 133
3.6.14 SolarGis ... 133

3.7 Influence of Factors on Changes in the Predicted Power Output .. 133
3.7.1 Estimation of the Average Values of Solar Radiation .. 135
3.7.2 Databases of Measured Values .. 135
3.7.3 Mathematical Models .. 135
3.7.4 Interpolation of Values .. 136
3.7.5 Satellite Images .. 136
3.7.6 The Methods of Existing Systems ... 136
3.7.7 Variability of Solar Energy Sources .. 137
3.7.8 Inaccuracies Due to the Use of Transposition Model .. 137
3.7.9 Inaccuracies Due to the Operation of Photovoltaic Power Plants 138

3.8 Assessing the Possibility to Increase the Available Power Output of PPPs ... 141
3.8.1 Tilting Systems ... 143
3.8.2 Photovoltaic System Without Traction ... 144
3.8.3 Photovoltaic System with Autotraction ... 145
3.8.4 Comparison of Both Systems ... 145
3.8.5 Maximum Power Point Tracking (MPPT) .. 146
3.8.6 MPPT Techniques .. 147
3.8.7 Concentrators .. 149
3.8.8 Efficiency of Panels, the Use of Radiation Spectrum .. 150

References .. 150

4 Hybrid Off-Grid Systems Using Renewable Energy Sources .. 153
4.1 General Description ... 153
4.2 Specification of Sources for Off-Grid Systems ... 154
4.3 Micro Off-Grid System ... 157
4.3.1 Simplified Economic Analysis of Micro Off-Grid System .. 161
4.4 Small Off-Grid System ... 164
4.4.1 Analysis of Consumption ... 164
4.4.2 Design of the Storage System ... 168
4.4.3 Design of the Source Part ... 173
4.4.4 Design of the Control System ... 175
4.4.5 Electric Power Quality .. 183
4.4.6 Active System of Power Consumption Management in the Off-Grid System ... 188
4.5 Analysis of Fault Conditions in the Off-Grid System ... 191
4.5.1 Overload in the Testing Platform of the Off-Grid System .. 193
4.5.2 Short-Circuit Faults in the Off-Grid System ... 199
4.5.3 Single-Phase Short-Circuit Faults in the Off-Grid System—The First Operating State 202
4.5.4 Single-Phase Short Circuit of the Off-Grid System: The Second Operating Status 206
4.5.5 Single-Phase Short Circuit in the Off-Grid System: The Third Operation Condition 209
4.5.6 Possibilities of Protection with the Use of the Existing Technology 217
4.5.7 Adaptive System of Protection for the Off-Grid System 219
4.5.8 Using SMC 144 for the Adaptive Protection System 223
4.5.9 Verification of the Adaptive System of the Off-Grid System Protection 229
References 234
Operation Characteristics of Renewable Energy Sources
Misak, S.; Prokop, L.
2017, XV, 235 p. 197 illus., Hardcover
ISBN: 978-3-319-43411-7