Part I The Path Towards Convergence

1 **Future Radio Access, Wi-Fi-LTE, LTE-Advanced:**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Path to 5G</td>
<td>3</td>
</tr>
<tr>
<td>Rajarajan Sivaraj and Prasant Mohapatra</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.1.1 LTE Principles of Operation and Deployment</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Carrier Aggregation</td>
<td>9</td>
</tr>
<tr>
<td>1.2.1 Definitions and Terminologies</td>
<td>9</td>
</tr>
<tr>
<td>1.2.2 Types of Carrier Aggregation</td>
<td>10</td>
</tr>
<tr>
<td>1.2.3 Radio Resource Management Framework for CA</td>
<td>15</td>
</tr>
<tr>
<td>1.3 Transmission Diversity and Spatial Multiplexing</td>
<td>18</td>
</tr>
<tr>
<td>1.3.1 Transmit Diversity—Definition and Terminologies</td>
<td>18</td>
</tr>
<tr>
<td>1.3.2 MIMO and Spatial Multiplexing—Definition and Terminologies</td>
<td>18</td>
</tr>
<tr>
<td>1.3.3 Coordinated Multi-point Transmission</td>
<td>19</td>
</tr>
<tr>
<td>1.3.4 Types of CoMP</td>
<td>22</td>
</tr>
<tr>
<td>1.3.5 Advancements: 3D Beamforming</td>
<td>24</td>
</tr>
<tr>
<td>1.3.6 Applications</td>
<td>25</td>
</tr>
<tr>
<td>1.4 Wi-Fi-LTE, Unlicensed LTE</td>
<td>27</td>
</tr>
<tr>
<td>1.4.1 Definition and Terminologies</td>
<td>27</td>
</tr>
<tr>
<td>1.4.2 CA of LTE-Licensed and LTE-U CCs</td>
<td>28</td>
</tr>
<tr>
<td>1.5 Network Heterogeneity: Self-organizing HetNets</td>
<td>30</td>
</tr>
<tr>
<td>1.5.1 Definition and Terminologies</td>
<td>30</td>
</tr>
<tr>
<td>1.5.2 Background on Inter-cell Interference Coordination (ICIC)</td>
<td>31</td>
</tr>
<tr>
<td>1.5.3 Enhanced Inter-cell Interference Coordination (EICIC)</td>
<td>34</td>
</tr>
</tbody>
</table>
1.5.4 Defining the CRE Region 35
1.5.5 Enhancements: eICIC with CA 37
1.6 Conclusion ... 38
References .. 39

Yiran Ma and Zhensheng Jia
2.1 Traffic Trend ... 43
2.2 Technologies of Broadband Access Networks 45
 2.2.1 Broadband Wireline Access Networks 45
 2.2.2 Broadband Wireless Access Networks 60
2.3 Fiber-Wireless Convergence and Technology Evolution .. 69
 2.3.1 Fiber-Based Distributed Antenna Systems (DASs) ... 69
 2.3.2 Ultra-High-Speed Fiber-Wireless Transmission 70
 2.3.3 Fiber-Wireless for Backhaul and the Fronthaul of HetNet 71
2.4 Conclusions ... 74
References .. 74

3 The Benefits of Convergence Through Fiber-Wireless Integration and Networking 77
Gee-Kung Chang and Lin Cheng
3.1 Introduction .. 77
3.2 Convergence of Architectures 80
 3.2.1 Centralization 80
 3.2.2 Resource Sharing 83
3.3 Convergence of Links 84
 3.3.1 Mobile Backhaul 84
 3.3.2 Mobile Midhaul and Fronthaul 87
3.4 Convergence of Bands 89
 3.4.1 All-Band Coverage 89
 3.4.2 MMW Links 91
3.5 Conclusion ... 92
References .. 93

Part II Novel Systems/Subsystems for Fi-Wi Networks

4 Analog and Digitized Radio-over-Fiber 99
Maurice Gagnaire
4.1 Existing Radio Cellular Networks 100
4.2 A-RoF Versus Baseband-over-Fiber 102
 4.2.1 Option 1: RF-Modulated Signals 103
 4.2.2 Option 2: IF Modulated Signals 103
 4.2.3 Option 3: Baseband-over-Fiber 104
 4.2.4 Conclusion 104
4.3 Transmission of Microwave Signals on Optical Fibers 104
4.3.1 Intensity Modulation (IM) and Direct Detection (DD) 105
4.3.2 External Modulation and Direct Detection (EM-DD) 106
4.3.3 Photo-detector-Based Heterodyning (HE) with Direct Detection (HE-DD) ... 107
4.3.4 Conclusion 109
4.4 Analog Radio-over-Fiber (A-RoF) 109
4.4.1 A-RoF for “RF-over-Fiber” 110
4.4.2 A-RoF for “IF-over-Fiber” 111
4.4.3 A-RoF for Multi-antennas Sites by Means of Sub-carrier Multiplexing (SCM) ... 112
4.4.4 A-RoF for Multi-antennas Sites by Means of Wavelength-Division Multiplexing (WDM) 114
4.5 Digitized Radio-over-Fiber (D-RoF) 117
4.5.1 Band-pass Sampling Theory 118
4.5.2 D-RoF for a Single-Antenna Site 120
4.5.3 D-RoF for a Multiple-Antenna Site 122
4.6 Conclusion ... 124
References... 125

5 Overview of Standardization for D-RoF 127
Silvano Frigerio, Alberto Lometti and Vincenzo Sestito
5.1 CPRI .. 128
5.1.1 Specification Overview 129
5.1.2 System Description 129
5.1.3 Main Requirements 130
5.1.4 Interface Description 131
5.1.5 CPRI Compression and CPRI Throughput Examples 137
5.2 OBSAI .. 138
5.2.1 OBSAI Specifications Status 139
5.2.2 System Architecture Overview 139
5.2.3 RP3-01 Insight .. 142
5.2.4 CPRI Versus OBSAI RP3-01 145
5.3 D-RoF Transport Over Optical Networks 146
5.3.1 CPRI Over OTN ... 149
5.3.2 Viable Network Applications for CPRI Over WDM/OTN 153
5.4 ORI .. 154
5.5 Conclusions .. 155
References... 156
6 Wireless Delivery of over 100 Gb/s mm-Wave Signal in the W-band ... 157
Jianjun Yu
6.1 Introduction .. 157
6.2 Approaches for the Realization of Large Capacity (>100 Gb/s) Fiber Wireless Integration System 160
6.2.1 Optical PDM Combined with MIMO Reception ... 161
6.2.2 Advanced Multi-level Modulation 166
6.2.3 Optical Multi-carrier Modulation 169
6.2.4 Electrical Multi-carrier Modulation 173
6.2.5 Antenna Polarization Multiplexing 175
6.2.6 Multi-band Multiplexing 178
6.3 Problems Existing in the Large Capacity Fiber Wireless Integration System and Corresponding Solutions 182
6.3.1 Wireless Multi-path Effects Due to Different Wireless Transmission Distances 182
6.3.2 Advance Algorithms Based on DSP 184
6.4 Conclusion ... 184
References ... 185

7 Systems Challenges for SDN in Fiber Wireless Networks 189
Neda Cvijetic and Ting Wang
7.1 Introduction .. 190
7.2 System-Level Fiber Wireless Network Challenges 192
7.2.1 Signaling Formats 193
7.2.2 Network Densification 194
7.2.3 Network Topology 195
7.3 SDN-Based Control Plane 196
7.3.1 SDN-Based Control in Fiber Wireless Networks ... 198
7.4 Recent Progress in SDN for Fiber Wireless Networks 201
7.5 Conclusions .. 206
References ... 207

Part III Novel Network Architectures for Fi-Wi Networks

8 Architectural Evolution and Novel Design of Fiber-Wireless Access Networks 213
Cheng Liu
8.1 Introduction .. 213
8.2 Overview of Existing Fiber-Wireless Access Architectures... 215
8.2.1 Macrocell and Small Cell with Fiber-Optic Backhaul 215
8.2.2 Distributed Antenna System 219
8.2.3 Cloud Radio Access Network (C-RAN) 221
8.3 Novel Cloud Radio-Over-Fiber Access Architecture 224
8.3.1 Generic Cloud-RoF Architecture and Operational Principle 224
8.3.2 Reconfigurable Cloud-RoF Architecture with WDM Techniques 226
8.3.3 Multi-Service Delivery Including Future-Proof Millimeter-Wave Services 228
8.4 Summary .. 232
References ... 232

9 Advanced Architectures for PON Supporting Fi-Wi Convergence 235
Georgios Ellinas, Kyriakos Vlachos, Chrysovalanto Christodoulou and Mohamed Ali
9.1 Introduction .. 236
9.2 Backhauling Wireless Traffic .. 236
9.3 Passive Optical Network (PON): Standards and Technology Options 239
9.4 Technology Options 239
9.4.1 TDM-PON 239
9.4.2 WDM-PON 241
9.4.3 OFDM-PON 244
9.4.4 Hybrid PONs..................................... 245
9.5 PON Standards 246
9.5.1 GPON/EPON. 246
9.6 10G-PON .. 247
9.7 10G-Epon .. 247
9.7.1 NG-PON2 248
9.7.2 Evolution Scenarios 250
9.8 Challenges in PON Design 251
9.9 Distributed Ring-Based WDM-PON Architecture .. 251
9.10 Architecture Design 253
9.11 Allocation of Network Resources ... 255
9.11.1 Dynamic Bandwidth Allocation . .. 256
9.11.2 Upstream Traffic Flows Rerouting and Sharing 256
9.12 Wavelength Assignment/Sharing for Downstream Traffic 257
9.13 Fault Detection and Recovery... 257
9.13.1 Fault Detection 259
9.13.2 Fault Recovery 259
9.14 Fronthauling Mobile Traffic ... 260
9.15 Conclusions .. 261
References. ... 262
10 BBU Hotelling in Centralized Radio Access Networks
Nicola Carapellese, M. Shamsabardeh, Massimo Tornatore
and Achille Pattavina

10.1 Introduction
10.2 Mobile Network
10.3 Evolving the Base Station: BBU and RRH
10.4 Advantages of BBU Hotelling
10.4.1 Cost Reduction
10.4.2 Energy Savings
10.4.3 Improved Radio Performance
10.5 Challenges of BBU Hotelling: Fronthaul
10.5.1 High, Constant Bitrate
10.5.2 Maximum End-to-End Latency
10.5.3 Strict QoS Requirements
10.6 RAN Architectures Based on BBU Hotelling
10.6.1 Classification on BBU Placement
10.6.2 Classification on Fronthaul Transport
10.6.3 Classification on BBU Implementation
10.7 An FMC Network Architecture for BBU Hotelling
10.7.1 General Network Architecture
10.7.2 BBU Placement
10.7.3 Traffic Routing
10.8 The BPTR Optimization Problem
10.9 A Heuristic Greedy Algorithm for BPTR
10.9.1 Notation and Input Data
10.9.2 Heuristic Subroutines
10.9.3 Heuristic Scheme
10.10 A Case Study for the BPTR
10.11 Conclusion and Open Issues
References

11 Rethink Ring and Young: Green and Soft RAN for 5G
Chih-Lin I, Jinri Huang, Ran Duan, Gang Li and Chunfeng Cui

11.1 Introduction
11.2 No More Cells: One Key 5G Vision
11.3 Cloud RAN: The Key Enablers to NMC
11.3.1 The Concept of C-RAN
11.3.2 C-RAN Features
11.3.3 Advantages of C-RAN
11.4 Challenges and Potential Solutions for C-RAN Realization
11.4.1 Challenges on Transport Networks for Centralization
11.4.2 Potential Fronthaul Solutions
11.4.3 Challenges on Virtualization Implementation
to Realize Resource Cloudification
References
11.5 Recent Progress on C-RAN from China Mobile 304
 11.5.1 Field Trials on Centralization with Different FH Solutions 304
 11.5.2 Exploitation of C-RAN Virtualization 307
11.6 Evolving Toward 5G 310
 11.6.1 C-RAN to Enable Key 5G Technologies 310
 11.6.2 Rethink CPRI: CPRI Redefinition 311
 11.6.3 Edge Application on C-RAN 313
11.7 Conclusions .. 314
References ... 315

Part IV Novel Management Strategies for Fi-Wi Networks

12 Next-Generation PoP with Functional Convergence Redistributions .. 319
Philippe Bertin, Tahar Mamouni and Stéphane Gosselin
12.1 Introduction .. 319
12.2 What Services at the Network Edge? 321
 12.2.1 Virtual Residential Gateway 322
 12.2.2 Broadband Network Gateway 324
 12.2.3 Distributed Evolved Packet Core 326
 12.2.4 Highly Distributed Content Delivery Networks 328
12.3 The Path Toward Fixed and Mobile Convergence 329
 12.3.1 Converged Subscriber Data and Session Management 329
 12.3.2 Universal Access Gateway 331
12.4 Implementing the NG PoP 333
 12.4.1 Design Principles 333
 12.4.2 Dimensioning the NG PoP 334
12.5 Conclusions .. 335
References ... 336

13 Coordinated Multi-point (CoMP) Systems 337
Yizhuo Yang, Christina Lim and Ampalavanapillai Nirmalathas
13.1 Introduction on CoMP 337
13.2 Requirements on the Backhaul Network 339
 13.2.1 Latency 340
 13.2.2 Synchronization 340
 13.2.3 Capacity 340
13.3 Backhaul Architecture 341
 13.3.1 GROW-Net Architecture 342
 13.3.2 FUTON Prototype 345
 13.3.3 Adaptive Photonics-Aided CoMP for MMW Small Cells 348
 13.3.4 Converged Fiber–Wireless Architecture 349
13.4 Fiber–Wireless Integration Schemes Enabling CoMP
13.4.1 BS Configuration
13.4.2 Performance Analysis
13.4.3 Implementation of CoMP
13.4.4 Experimental Demonstration

13.5 Summary

References

14 Converged Wireless Access/Optical Metro Networks in Support of Cloud and Mobile Cloud Services
Deploying SDN Principles

Anna Tzanakaki, Markos Anastasopoulos, Bijan Rofooe, Shuping Peng, George Zervas, Reza Nejabati, Dimitra Simeonidou, Giada Landi, Giacomo Bernini, Roberto Monno, Nicola Ciulli, Gino Carrozzo, Kostas Katsalis, Thanasis Korakis, Leandros Tassiulas, Georgios Dimosthenous, Dora Christofi, Jordi Ferrer Riera, Eduard Escalona, Jacopo Pianigiani, Dirk Van Den Borne and Gert Grammel

14.1 Introduction
14.2 Existing Technology Solutions Supporting Cloud and Mobile Cloud Services
14.2.1 Physical Infrastructure Solutions Supporting Cloud Services
14.2.2 Infrastructure Management
14.2.3 Service Provisioning
14.3 Proposed Converged Network Architecture
14.3.1 Vision and Architectural Approach
14.3.2 Physical Infrastructure Layer
14.3.3 Infrastructure Management
14.3.4 Virtual Infrastructure Control Layer
14.3.5 Converged Service Orchestration
14.4 Architecture Evaluation
14.5 Conclusions

References

Conclusion and Future Topics

Index
Fiber-Wireless Convergence in Next-Generation Communication Networks
Systems, Architectures, and Management
Tornatore, M.; Chang, G.-K.; Ellinas, G. (Eds.)
2017, XXVI, 406 p. 205 illus., 167 illus. in color., Hardcover
ISBN: 978-3-319-42820-8