Contents

1 Introduction .. 1
References ... 6

2 Theories and Models of Ion Diffusion 9
 2.1 Linear Response Theory 9
 2.1.1 Linear Response Function 10
 2.1.2 The Kramers-Kronig Relations 13
 2.1.3 The Fluctuation-Dissipation Theorem 14
 2.2 Dielectric Relaxation 15
 2.2.1 Debye Relaxation 16
 2.2.2 Non-Debye Relaxation 18
 2.3 Conductivity Relaxation 21
 2.3.1 Electric Modulus Formalism 21
 2.3.2 Conductivity Formalism 23
 2.3.3 Empirical Description of Ion Dynamics,
 Distribution of Relaxation Times 24
 2.3.4 Ion Diffusion Mechanisms 32
 2.3.5 Temperature Dependence of Ion Diffusion .. 34
 2.3.6 One Dimensional Random-Hopping Model
 for Ionic Conductivity 35
 2.4 Non-Gaussianity of Dynamics 37
 2.4.1 Relation Between Jump Rate and Relaxation
 Rate in the Stretched Exponential Decay:
 From the Modeling by the Molecular Dynamics
 Simulations 38
 2.4.2 Relation Between Power Law Exponent
 of MSD and Characteristics of Jump Motions .. 41
 2.4.3 Relation Between the Theory of Fractal
 and the Characteristics of Jumps 43
2.4.4 Distribution of Length Scales and Lévy Distribution .. 44
2.4.5 Heterogeneity and Multifractal Mixing of Different Length Scales 45
2.4.6 Separation of Exponents Having Different Origins .. 45

2.5 Models of Ion Dynamics ... 46
2.5.1 Random Barrier Model ... 46
2.5.2 The MIGRATION Concept ... 50
2.5.3 The Coupling Model ... 53

References ... 57

3 Experimental Probes for Ion Dynamics ... 61
3.1 Impedance Spectroscopy .. 61
3.1.1 Description of the Technique .. 61
3.1.2 IS Data Analysis .. 66
3.1.3 Experimental Considerations ... 73
3.2 Nuclear Magnetic Resonance .. 78

References ... 86

4 Electrical Response of Ionic Conductors .. 89
4.1 Electrical Conductivity Relaxation in Glassy, Crystalline and Molten Ionic Conductors ... 89
4.1.1 Frequency Dependence of Ionic Conductivity Relaxation ... 92
4.1.2 Dissection into Contributions from Different Time/Frequency Regimes 98

4.2 Comparison of Methods for Analysis of Data .. 101
4.2.1 The Electric Modulus ... 101
4.2.2 Jonscher Expression and Augmented Jonscher Expression to Fit $\sigma(f)$ 119

4.3 Relevance of Theories and Models to Experimental Findings 122
4.3.1 Random Barrier Models ... 123
4.3.2 Jump Relaxation Models and the MIGRATION Concept 124
4.3.3 Comparison of MC with CM ... 128
4.3.4 Monte Carlo and Molecular Dynamics Simulations ... 130

4.4 The Coupling Model (CM) .. 130
4.4.1 The CM Based on Universal Statistics of Energy Levels 131
4.4.2 Tracing the Key Result of the CM, $W(t) = W_0(\omega_c t)^{-n}$, Back to R. Kohlrausch ... 136
4.4.3 Coupling Model from Classical Chaos ... 137
4.4.4 Relaxation of Interacting Arrays of Phase-Coupled Oscillators 138
4.5 Experimental Verifications of the CM................................. 140
 4.5.1 Direct Crossover... 141
 4.5.2 Q-Dependence of τ^* and τ_0.......................... 143
 4.5.3 Evidence of Crossover from Other Experiments in Ionic Conductors......................... 147
 4.5.4 Quasielastic Neutron Scattering Studies of Glassy Ionic Conductors...................... 151
 4.5.5 Change of Temperature Dependence of σ_{dc} at High Temperatures.................... 152
 4.5.6 The Non-Arrhenius Intermediate Temperature Region.. 156
 4.5.7 Anomalously Short Prefactor τ^*_{∞}.......................... 157
 4.5.8 The Meyer-Neldel Rule or Compensation Law... 160
 4.5.9 Anti Meyer-Neldel Rule.. 161
 4.5.10 Computer Simulations of Energy Barrier of YSZ... 162
 4.5.11 Temperature Independence of $\Delta \varepsilon$ in YSZ.. 164

4.6 Oxide-Ion Dynamics and Diffusion in $RE_2Zr_{2-y}Ti_yO_7$ Conductors......................... 166
 4.6.1 Cation Size Effects in Oxygen ion Dynamics... 171

4.7 Li-Ion Dynamics and Diffusion in $Li_{3x}La_{2/3}Co_{x}TiO_3$................................. 175
 4.7.1 Unusual Non-Arrhenius dc Conductivity of LLTO.. 182
 4.7.2 Accounting for the Non-Arrhenius T-Dependence of $\sigma_{dc}(T)$ from n(T) by the CM..... 184

4.8 Caged Dynamics and Nearly Constant Loss in Ionic Conductors................................ 185
 4.8.1 Caged Ion Dynamics, Properties and Termination by the Primitive Relaxation............ 188
 4.8.2 Ruling Out the Augmented Jonscher Expression.. 191

4.9 Evidences of Evolution of Ion Dynamics with Time... 193
 4.9.1 Colloidal Particles Suspension by Confocal Microscopy Experiment.............................. 193
 4.9.2 Molecular Dynamics Simulations of Li_2SiO_3.. 195
 4.9.3 Experimental Conductivity Relaxation Data... 200

4.10 Properties of Caged Ion Dynamics, Primitive Relaxation, and Many-Ion $\sigma^\beta(\omega)$ Are Related......... 204
 4.10.1 Derivation of the Weak T-Dependence of the NCL... 204
 4.10.2 Anti-Correlation of NCL with E_a or E_σ.. 206
 4.10.3 Correlation of E_a or E_σ with $(1-n)$.. 210
 4.10.4 Origin of Correlation of E_a with $(1-n)$, and Anti-Correlation with NCL.................. 211
4.11 The Mixed Alkali Effect .. 217
 4.11.1 Immobilization of Li Ions by Frozen Li Ions in the Confining Walls 222
 4.11.2 Comparison of Electrical Relaxation with Mechanical Relaxation 229
4.12 Haven Ratio, Breakdown of Nernst-Einstein Relation 229
 4.12.1 The Haven Ratio for Mixed Alkali Glasses 231
4.13 Relating Macroscopic Electrical Conductivity to Microscopic Movements of Ions .. 232
 4.13.1 An Experimental Verification .. 239
4.14 Relation to Other Chapters .. 239
References ... 239

5 NMR Experiments in Ionic Conductors 251
 5.1 Ion Dynamics Studied by NMR Techniques ... 252
 5.2 Relation Between SLR and ECR in Ionic Conductors 259
 5.2.1 Absence of Difference Between 11B Spin Relaxation and Li Ion Conductivity Relaxation in (LiCl)$_{0.6}$(Li$_2$O)$_{0.7}$(B$_2$O$_3$) 264
 5.2.2 Quantitative Difference Between the Values of τ_s and τ_M 265
References ... 273

6 Nanoionics .. 277
 6.1 Space Charge Effects .. 278
 6.2 Oxide Thin Films and Interfaces .. 287
 6.3 Nano Ion Dynamics .. 293
 6.3.1 Oxygen Ion Dynamics in YSZ Thin Films ... 294
 6.3.2 Interfaces of Epitaxial ZrO$_2$:Y$_2$O$_3$/SrTiO$_3$ Heterostructures 296
 6.3.3 Computer Simulations Data Compared with Theoretical Interpretation 298
 6.4 Nanoionics for Energy ... 300
 6.5 Outlook ... 303
References ... 306

7 Ionic Liquids: Physics Bridging Two Fields 311
 7.1 Introduction .. 311
 7.2 Invariance of the Structural α-Dispersion to Various Combinations of T and P with τ_α Kept Constant 312
 7.3 Invariance of the Conductivity α-Dispersion of ILs to Various Combinations of T and P with $\tau_{\sigma\alpha}$ Kept Constant 315
 7.3.1 0.4Ca(NO$_3$)$_2$-0.6KNO$_3$ (CKN) ... 315
 7.3.2 Narrowing of the Conductivity Relaxation Dispersion of CKN on Decoupling: An Observation Challenging for Explanation 319
7.3.3 Analogy from the IL, 1-Butyl-3-Methylimidazolium Hexafluorophosphate (BMIM-PF$_6$) 322
7.3.4 1-Butyl-1-Methylpyrrolidinium Bis[Oxalato] Borate (BMP-BOB) ... 324
7.3.5 1-Hexyl-3-Methylimidazolium Chloride 325
7.3.6 1-Methyl-3-Trimethylsilylmethylimidazolium Tetrafluoroborate ([Si-MIm][BF$_4$]) 326
7.3.7 Caged Ion Dynamics in Ionic Liquids 329
7.3.8 Protonic Ionic Liquids 330

7.4 Thermodynamic (T^{γ}) Scaling of α-Relaxation Time and Viscosity of Non-ionic Glass-Formers 332
7.4.1 Causality Implies the ρ^γ/T-Dependence Originates from That of the Primitive or JG β-Relaxation . . 336
7.4.2 No Correlation Between γ and the Characteristics (n, m_p, ξ_{het}) of the α-Relaxation: Another Support of Its ρ^γ/T-Dependence Originating from That of τ_0 or τ_JG .. 336

7.5 Thermodynamic (ρ^γ/T) Scaling of Conductivity α-Relaxation Time and Viscosity of IL 338
7.5.1 RTIL [C$_8$MIM][NTf$_2$] 338
7.5.2 RTIL [C$_4$mim][NTf$_2$] 341
7.5.3 RTIL BMP-BOB ... 342

7.6 Thermodynamic Scaling of Viscosity of RTILs 343

7.7 Scaling of Other ILs 343

7.8 Molecular Dynamics Simulations of Thermodynamic Scaling of EMIM$^+$-NO$_3^-$ 345

7.9 Molecular Dynamics Simulations of Thermodynamic Scaling of 2Ca(NO$_3$)$_2$-3KNO$_3$ (CKN) 346

7.10 Molecular Dynamics Simulation: Indication of $T^{-1}V^{-\gamma}$-Dependence Originating from the Primitive or JG β-Relaxation 349

7.11 Conclusion .. 351

References .. 352

8 Molecular Dynamics Simulations .. 355
8.1 Molecular Dynamics Simulations in Ionic Systems 355
8.1.1 Purpose and Goals of the Molecular Dynamics Simulations .. 355
8.1.2 History of MD Simulations in Iomics 356

8.2 Methods in Molecular Dynamics Simulations 358
8.2.1 Classical and Ab Initio Methods 359
8.2.2 Models Used in MD Simulations 361
8.2.3 Units Used in MD and Combination of Potential Models .. 367
8.2.4 Solving the Equation of Motion 368
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.5</td>
<td>Treatment of Coulombic Force</td>
<td>370</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Multipole Expansion and Tree Method</td>
<td>374</td>
</tr>
<tr>
<td>8.2.7</td>
<td>General Description of the Multipole Expansion</td>
<td>375</td>
</tr>
<tr>
<td>8.2.8</td>
<td>Multipoles as an Origin of Nearly Constant Loss (NCL) of Caged Ion Dynamics</td>
<td>376</td>
</tr>
<tr>
<td>8.2.9</td>
<td>Treatment of Rotational Motion</td>
<td>377</td>
</tr>
<tr>
<td>8.2.10</td>
<td>Ensembles Used for MD Simulations</td>
<td>381</td>
</tr>
<tr>
<td>8.2.11</td>
<td>Parrinello-Rahman Methods</td>
<td>385</td>
</tr>
<tr>
<td>8.2.12</td>
<td>High Performance Computation</td>
<td>385</td>
</tr>
<tr>
<td>8.3</td>
<td>Physical Quantity and Properties Obtained from MD Simulations</td>
<td>387</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Structural Properties</td>
<td>388</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Dynamic Properties</td>
<td>391</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Space-Time Correlations</td>
<td>394</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Thermal Properties</td>
<td>396</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Thermodynamic Scaling and Other</td>
<td>396</td>
</tr>
<tr>
<td>8.3.6</td>
<td>Further Possible Analyses</td>
<td>397</td>
</tr>
<tr>
<td>8.4</td>
<td>Errors in the Molecular Dynamics Simulations</td>
<td>397</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Errors Occurred in the Numerical Treatment</td>
<td>397</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Numerical Errors Occurred During MD Runs</td>
<td>398</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Propagation of Small Error and Lyapunov Exponent</td>
<td>399</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Backward Error Analysis of the Averaged Properties</td>
<td>400</td>
</tr>
<tr>
<td>8.5</td>
<td>Treatments of Slow and Fast Dynamics in Ionic Systems</td>
<td>401</td>
</tr>
<tr>
<td>8.5.1</td>
<td>System Size Requirements (Relationship with Fragility and Confinement)</td>
<td>401</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Equilibration and Cooling Schedules in the MD Simulation of Glasses</td>
<td>404</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Ensembles Used in the Simulations of Super-Cooled Liquid, Glass, and in the Treatment of Glass Transition</td>
<td>404</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Sampling of Structures and Dynamics</td>
<td>405</td>
</tr>
<tr>
<td>8.5.5</td>
<td>Non-ergodicity of the Dynamics for Network Former</td>
<td>406</td>
</tr>
<tr>
<td>8.5.6</td>
<td>Relation Between Ion Dynamics and Chaos</td>
<td>406</td>
</tr>
<tr>
<td>8.5.7</td>
<td>Sampling of Rare Event with Dynamic Heterogeneity-Ergodicity of Ionic Motion</td>
<td>407</td>
</tr>
<tr>
<td>8.6</td>
<td>Non-equilibrium Molecular Dynamics and Reverse Non-equilibrium Molecular Dynamics</td>
<td>410</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>410</td>
</tr>
</tbody>
</table>
9 Molecular Dynamics Simulation of Silicate Glasses

9.1 Derivation of the Potential Parameters from Ab Initio Calculations

9.1.1 Quality of the Parameters

9.2 Characteristics of the Structure

9.2.1 Statistics of the Framework Structures

9.2.2 Changes in the Q_n Structure Under Pressure

9.2.3 Time Dependence of the Q_n Distribution After Compression

9.2.4 Comparison with Experimental Q_n Distribution

9.3 Are the Structures Random or Fractal?

9.4 Temporal and Spatial Aspects of the Dynamics

9.4.1 Mean Squared Displacement (MSD) of Li Ions in Lithium Metasilicate

9.4.2 Several Time Regions in the Mean Squared Displacement

9.4.3 Intermediate Scattering Functions

9.4.4 Time Regions Found in Lithium Disilicate Glass

9.5 Dynamic Heterogeneities

9.5.1 The Non-Gaussian Parameter

9.5.2 Some Characteristics of the Dynamics in NCL Region

9.5.3 Characteristics of Jump and Separation of Temporal and Spatial Term

9.5.4 Heterogeneity Shown by Fractal Dimension Analysis of Trajectories

9.5.5 Different View for the Temporal and Spatial Terms

9.6 Comparison with Other Systems

9.7 Cooperativity of the Motion and Vacancy Dynamics

9.8 Mixing of Heterogeneity and Its Life Time

9.9 Comparison of Dynamics Obtained by MD and Experiments

9.9.1 High Temperature Region

9.9.2 Low and Medium Temperature Region

9.9.3 Role of Different Cooling Rate

9.9.4 Composition Dependence of the Diffusion Coefficient of Li Ions in Lithium Silicate

9.10 Comparison of Dynamics in Crystal and Glass

9.10.1 Role of Defects in the Crystal and Glass

9.11 Conclusion

References
10 The Mixed Alkali Effect Examined by Molecular Dynamics Simulations

10.1 Overview and Brief History

10.2 Evidence of the Interception of Jump Paths Among the Ion Sites of Different Kinds of Alkali Ions:
Distinct-Part of the Van Hove Function

10.3 Composition Dependence of the Mixed Alkali Effect

10.4 Visualization of the Ion Trajectories and Paths in the Mixed Alkali System

10.5 Quantitative Characterization of the Slowing Down of the Dynamics

10.5.1 Combination of Fractal Dimension of Paths and Walks

10.5.2 Fractal Dimension of Jump Path and Walks

10.5.3 Rapid Decrease of the Diffusivity in the Dilute Foreign Alkali Region

10.5.4 Multifractality of Jump Path and the Percolative Aspect of MAE

10.5.5 Self-Part of the Van Hove Functions

10.6 Haven Ratio in the Mixed Alkali System

10.7 MAE as a Cooperativity Blockage

10.7.1 Relation with Confined Systems

10.8 Motions Among Unlike Ion Sites

10.8.1 Loosening of the Structure in the Mixed Alkali System

10.8.2 Internal Friction Peak in the Mixed Alkali System

10.9 Temporal and Spatial Aspect of MAE

10.10 Role of the Motion of Matrix Oxygen Atoms

10.11 Comparison with Other Methods

10.12 Conclusion

References

11 Molecular Dynamics Simulations of Ionic Liquids

11.1 Brief Introduction and History

11.2 MD Study of 1-Ethyl-3-Methyl-Imidazolium Nitrate (EMIM-NO3)

11.2.1 Heterogeneity in the Structure of Ionic Liquid, EMIM-NO3

11.2.2 Pair Correlation Functions

11.3 Several Time Regions in MSD
11.4 Temperature Dependence of the Dynamics
11.4.1 Origin of the Fragile Behaviors Characterized by the Temperature Dependence of the Diffusivity
11.4.2 Fragility Characterized by the Different Slopes of Two Regions
11.5 Dynamic Heterogeneity in Ionic Liquid
11.5.1 Heterogeneity Observed in the Trajectories of Ions
11.5.2 Fractal Dimension of the Random Walks
11.5.3 Self-Part of the Van Hove Functions
11.5.4 Distinct-Part of the Van Hove Function
11.6 Multifractal Structure of the Density Profile
11.7 Multifractality in the Walk
11.8 Intermediate Scattering Function, $F_s(k,t)$
11.9 Deterministic Nature of the System: Phase Space Plot
11.10 Thermodynamic Scaling of Ionic Liquids
11.10.1 Comparison Between Corresponding States on a Master Curve
11.10.2 Potential of Mean Force
11.11 Temperature Dependence of Topological Structures of Ionic Liquids
11.11.1 Rigidity and Soft Percolation of Fictive Networks: Infinitive Networks Found in the Ionic Liquid Based Glass
11.11.2 Existence of T_B and T_g in the System Volume and in the Diffusivity
11.11.3 Structural Change at T_g as a Rigidity Percolation: Number of Bonds and Degree of Freedom of the Whole System
11.11.4 Geometrical Degree of the Freedom in the Polyhedron
11.11.5 Temperature Dependence of the Distributions of N_V
11.11.6 Changes of the Distribution of N_V and N_B at Around T_B and T_g
11.11.7 The Concept of Rigidity and Soft Percolation
11.11.8 Relation of the Structure of Polyhedron with the Dynamics
11.11.9 Relation with Thermodynamic Scaling
11.11.10 Formation of the Infinitive Networks and the Glass Transition
11.12 Further Details of the Dynamic Heterogeneity
11.12.1 Accelerated Dynamics in Ionic Systems
11.12.2 Origin of the Lévy Distribution: Fractional Fokker-Planck Equation
11.13 Acceleration of the Motion on Surfaces
11.14 Conclusion
References

12 Practical Introduction to the MD Simulations of Ionic Systems
12.1 Examples of MD Simulation of Ionic System
12.2 Example 2: Analysis of the Lévy Flight and Lévy (Alpha Stable) Distribution
12.2.1 Example of Analysis for a Mobile Ion
12.2.2 Log Return of Data
12.2.3 Comparison of the Distribution of Log-Return and the Fitted Curve
12.2.4 Further Analysis of Cumulative Distribution and Comparison of Lévy (Alpha Stable with $\alpha < 2$) and Gaussian Distribution (Alpha Stable with $\alpha = 2$)
12.2.5 Free CDF Files with Manipulation
12.3 Example 3: Examining Movies
12.4 Fundamental Usage of MD Programs
12.4.1 INPUT of the MD Programs
12.4.2 Preparation of Initial Configurations for Crystals
12.4.3 Data Base for Crystal Structures
12.4.4 Initial Configurations for Melts and Glasses
12.5 Output of the MD Programs
12.6 Software for MD Simulations
12.7 Software for Visualization
References

13 Some Applications and Further Problems
13.1 Fabrication of Porous Structures in Molecular Dynamics Simulations: For Design and Examination of Solid State Batteries
13.1.1 Modeling of Porous Silica in MD
13.1.2 MD Simulations of Porous Lithium Disilicate
13.2 Application of Thermodynamic Scaling to the Material Design
13.3 Applicability of Effective Potential Parameters for Coarse-Grained Dynamics
Dynamics of Glassy, Crystalline and Liquid Ionic Conductors
Experiments, Theories, Simulations
Habasaki, J.; Leon, C.; Ngai, K.L.
2017, XIX, 600 p. 249 illus., 196 illus. in color., Hardcover
ISBN: 978-3-319-42389-0