Contents

1 Introduction .. 1
References .. 6

2 Theories and Models of Ion Diffusion 9
2.1 Linear Response Theory 9
 2.1.1 Linear Response Function 10
 2.1.2 The Kramers-Kronig Relations 13
 2.1.3 The Fluctuation-Dissipation Theorem 14
2.2 Dielectric Relaxation 15
 2.2.1 Debye Relaxation 16
 2.2.2 Non-Debye Relaxation 18
2.3 Conductivity Relaxation 21
 2.3.1 Electric Modulus Formalism 21
 2.3.2 Conductivity Formalism 23
 2.3.3 Empirical Description of Ion Dynamics.
 Distribution of Relaxation Times 24
 2.3.4 Ion Diffusion Mechanisms 32
 2.3.5 Temperature Dependence of Ion Diffusion 34
 2.3.6 One Dimensional Random-Hopping Model
 for Ionic Conductivity 35
2.4 Non-Gaussianity of Dynamics 37
 2.4.1 Relation Between Jump Rate and Relaxation
 Rate in the Stretched Exponential Decay:
 From the Modeling by the Molecular Dynamics
 Simulations .. 38
 2.4.2 Relation Between Power Law Exponent
 of MSD and Characteristics of Jump Motions 41
 2.4.3 Relation Between the Theory of Fractal
 and the Characteristics of Jumps 43
2.4.4 Distribution of Length Scales and Lévy Distribution .. 44
2.4.5 Heterogeneity and Multifractal Mixing of Different Length Scales 45
2.4.6 Separation of Exponents Having Different Origins 45
2.5 Models of Ion Dynamics ... 46
2.5.1 Random Barrier Model .. 46
2.5.2 The MIGRATION Concept ... 50
2.5.3 The Coupling Model ... 53
References ... 57

3 Experimental Probes for Ion Dynamics .. 61
3.1 Impedance Spectroscopy ... 61
3.1.1 Description of the Technique .. 61
3.1.2 IS Data Analysis .. 66
3.1.3 Experimental Considerations .. 73
3.2 Nuclear Magnetic Resonance .. 78
References ... 86

4 Electrical Response of Ionic Conductors .. 89
4.1 Electrical Conductivity Relaxation in Glassy, Crystalline and Molten Ionic Conductors .. 89
4.1.1 Frequency Dependence of Ionic Conductivity Relaxation 92
4.1.2 Dissection into Contributions from Different Time/Frequency Regimes 98
4.2 Comparison of Methods for Analysis of Data 101
4.2.1 The Electric Modulus .. 101
4.2.2 Jonscher Expression and Augmented Jonscher Expression to Fit \(\sigma(f) \) ... 119
4.3 Relevance of Theories and Models to Experimental Findings 122
4.3.1 Random Barrier Models .. 123
4.3.2 Jump Relaxation Models and the MIGRATION Concept 124
4.3.3 Comparison of MC with CM ... 128
4.3.4 Monte Carlo and Molecular Dynamics Simulations 130
4.4 The Coupling Model (CM) ... 130
4.4.1 The CM Based on Universal Statistics of Energy Levels 131
4.4.2 Tracing the Key Result of the CM, \(W(t) = W_0(\omega_0 t)^{-n} \), Back to R. Kohlrausch ... 136
4.4.3 Coupling Model from Classical Chaos .. 137
4.4.4 Relaxation of Interacting Arrays of Phase-Coupled Oscillators 138
4.5 Experimental Verifications of the CM 140
 4.5.1 Direct Crossover 141
 4.5.2 Q-Dependence of τ^* and τ_0 143
 4.5.3 Evidence of Crossover from Other Experiments in Ionic Conductors 147
 4.5.4 Quasielastic Neutron Scattering Studies of Glassy Ionic Conductors 151
 4.5.5 Change of Temperature Dependence of σ_{dc} at High Temperatures 152
 4.5.6 The Non-Arrhenius Intermediate Temperature Region ... 156
 4.5.7 Anomalously Short Prefactor τ_∞^* 157
 4.5.8 The Meyer-Neldel Rule or Compensation Law .. 160
 4.5.9 Anti Meyer-Neldel Rule 161
 4.5.10 Computer Simulations of Energy Barrier of YSZ ... 162
 4.5.11 Temperature Independence of $\Delta \varepsilon_{inYSZ}$... 164
4.6 Oxide-Ion Dynamics and Diffusion in RE$_2$Zr$_{2-y}$Ti$_y$O$_7$ Conductors 166
 4.6.1 Cation Size Effects in Oxygen ion Dynamics 171
4.7 Li-Ion Dynamics and Diffusion in Li$_{3x}$La$_{2/3-x}$TiO$_3$.. 175
 4.7.1 Unusual Non-Arrhenius dc Conductivity of LLTO ... 182
 4.7.2 Accounting for the Non-Arrhenius T-Dependence of $\sigma_{dc}(T)$ from n(T) by the CM 184
4.8 Caged Dynamics and Nearly Constant Loss in Ionic Conductors .. 185
 4.8.1 Caged Ion Dynamics, Properties and Termination by the Primitive Relaxation 188
 4.8.2 Ruling Out the Augmented Jonscher Expression 191
4.9 Evidences of Evolution of Ion Dynamics with Time ... 193
 4.9.1 Colloidal Particles Suspension by Confocal Microscopy Experiment 193
 4.9.2 Molecular Dynamics Simulations of Li$_2$SiO$_3$ 195
 4.9.3 Experimental Conductivity Relaxation Data ... 200
4.10 Properties of Caged Ion Dynamics, Primitive Relaxation, and Many-Ion $\sigma'_\beta(\omega)$ Are Related ... 204
 4.10.1 Derivation of the Weak T-Dependence of the NCL .. 204
 4.10.2 Anti-Correlation of NCL with E_a or E_σ ... 206
 4.10.3 Correlation of E_a or E_σ with $(1-n)$... 210
 4.10.4 Origin of Correlation of E_a with $(1-n)$, and Anti-Correlation with NCL 211
4.11 The Mixed Alkali Effect .. 217
 4.11.1 Immobilization of Li Ions by Frozen Li Ions in the Confining Walls 222
 4.11.2 Comparison of Electrical Relaxation with Mechanical Relaxation 229
4.12 Haven Ratio, Breakdown of Nernst-Einstein Relation 229
 4.12.1 The Haven Ratio for Mixed Alkali Glasses 231
4.13 Relating Macroscopic Electrical Conductivity to Microscopic Movements of Ions 232
 4.13.1 An Experimental Verification 239
4.14 Relation to Other Chapters 239
References .. 239

5 NMR Experiments in Ionic Conductors 251
 5.1 Ion Dynamics Studied by NMR Techniques 252
 5.2 Relation Between SLR and ECR in Ionic Conductors 259
 5.2.1 Absence of Difference Between 11B Spin Relaxation and Li Ion Conductivity Relaxation in (LiCl)$_{0.6}$(Li$_2$O)$_{0.7}$(B$_2$O$_3$) 264
 5.2.2 Quantitative Difference Between the Values of τ_s and τ_M 265
References .. 273

6 Nanoionics ... 277
 6.1 Space Charge Effects 278
 6.2 Oxide Thin Films and Interfaces 287
 6.3 Nano Ion Dynamics 293
 6.3.1 Oxygen Ion Dynamics in YSZ Thin Films 294
 6.3.2 Interfaces of Epitaxial ZrO$_2$:Y_2O$_3$/SrTiO$_3$ Heterostructures 296
 6.3.3 Computer Simulations Data Compared with Theoretical Interpretation 298
 6.4 Nanoionics for Energy 300
 6.5 Outlook ... 303
References .. 306

7 Ionic Liquids: Physics Bridging Two Fields 311
 7.1 Introduction .. 311
 7.2 Invariance of the Structural α-Dispersion to Various Combinations of T and P with τ_α Kept Constant 312
 7.3 Invariance of the Conductivity α-Dispersion of ILs to Various Combinations of T and P with $\tau_{\sigma\alpha}$ Kept Constant 315
 7.3.1 0.4Ca(NO$_3$)$_2$-0.6KNO$_3$ (CKN) 315
 7.3.2 Narrowing of the Conductivity Relaxation Dispersion of CKN on Decoupling: An Observation Challenging for Explanation 319
7.3.3 Analogy from the IL, 1-Butyl-3-Methylimidazolium Hexafluorophosphate (BMIM-PF6) 322
7.3.4 1-Butyl-1-Methylpyrrolidinium Bis[Oxalato] Borate (BMP-BOB) 324
7.3.5 1-Hexyl-3-Methylimidazolium Chloride 325
7.3.6 1-Methyl-3-Trimethylsilylmethylimidazolium Tetrafluoroborate ([Si-MIm][BF4]) 326
7.3.7 Caged Ion Dynamics in Ionic Liquids 329
7.3.8 Protonic Ionic Liquids 330

7.4 Thermodynamic (TV^γ) Scaling of α-Relaxation Time and Viscosity of Non-ionic Glass-Formers 332
7.4.1 Causality Implies the $p/\gamma T$-Dependence Originates from That of the Primitive or JG β-Relaxation . . . 336
7.4.2 No Correlation Between γ and the Characteristics (n, m_P, ξ_{het}) of the α-Relaxation: Another Support of Its $p/\gamma T$-Dependence Originating from That of τ_0 or τ_{JG} 336

7.5 Thermodynamic ($p/\gamma T$) Scaling of Conductivity α-Relaxation Time and Viscosity of IL 338
7.5.1 RTIL [C$_8$MIM][NTf$_2$] 338
7.5.2 RTIL [C$_4$mim][NTf$_2$] 341
7.5.3 RTIL BMP-BOB 342

7.6 Thermodynamic Scaling of Viscosity of RTILs 343

7.7 Scaling of Other ILs 343

7.8 Molecular Dynamics Simulations of Thermodynamic Scaling of EMIM$^+\cdot$NO$_3^−$.. 345

7.9 Molecular Dynamics Simulations of Thermodynamic Scaling of 2Ca(NO$_3$)$_2\cdot$3KNO$_3$ (CKN) 346

7.10 Molecular Dynamics Simulation: Indication of $TV^{-1}V^{-\gamma}$-Dependence Originating from the Primitive or JG β-Relaxation .. 349

7.11 Conclusion ... 351

References .. 352

8 Molecular Dynamics Simulations 355
8.1 Molecular Dynamics Simulations in Ionic Systems 355
8.1.1 Purpose and Goals of the Molecular Dynamics Simulations ... 355
8.1.2 History of MD Simulations in Ionics 356
8.2 Methods in Molecular Dynamics Simulations 358
8.2.1 Classical and Ab Initio Methods 359
8.2.2 Models Used in MD Simulations 361
8.2.3 Units Used in MD and Combination of Potential Models ... 367
8.2.4 Solving the Equation of Motion 368
8.2.5 Treatment of Coulombic Force
8.2.6 Multipole Expansion and Tree Method
8.2.7 General Description of the Multipole
 Expansion
8.2.8 Multipoles as an Origin of Nearly Constant
 Loss (NCL) of Caged Ion Dynamics
8.2.9 Treatment of Rotational Motion
8.2.10 Ensembles Used for MD Simulations
8.2.11 Parrinello-Rahman Methods
8.2.12 High Performance Computation

8.3 Physical Quantity and Properties Obtained
from MD Simulations
8.3.1 Structural Properties
8.3.2 Dynamic Properties
8.3.3 Space-Time Correlations
8.3.4 Thermal Properties
8.3.5 Thermodynamic Scaling and Other
 Scaling Rules
8.3.6 Further Possible Analyses

8.4 Errors in the Molecular Dynamics Simulations
8.4.1 Errors Occurred in the Numerical Treatment
8.4.2 Numerical Errors Occurred During MD Runs
8.4.3 Propagation of Small Error and Lyapunov
 Exponent
8.4.4 Backward Error Analysis of the Averaged
 Properties

8.5 Treatments of Slow and Fast Dynamics
in Ionic Systems
8.5.1 System Size Requirements (Relationship
 with Fragility and Confinement)
8.5.2 Equilibration and Cooling Schedules
 in the MD Simulation of Glasses
8.5.3 Ensembles Used in the Simulations
 of Super-Cooled Liquid, Glass,
 and in the Treatment of Glass Transition
8.5.4 Sampling of Structures and Dynamics
 Near the Glass Transition Regimes and Glasses
8.5.5 Non-ergodicity of the Dynamics
 for Network Former
8.5.6 Relation Between Ion Dynamics and Chaos
8.5.7 Sampling of Rare Event with Dynamic
 Heterogeneity-Ergodicity of Ionic Motion

8.6 Non-equilibrium Molecular Dynamics
 and Reverse Non-equilibrium Molecular Dynamics

References
10 The Mixed Alkali Effect Examined by Molecular Dynamics Simulations

10.1 Overview and Brief History

10.2 Evidence of the Interception of Jump Paths Among the Ion Sites of Different Kinds of Alkali Ions: Distinct-Part of the Van Hove Function

10.3 Composition Dependence of the Mixed Alkali Effect

10.4 Visualization of the Ion Trajectories and Paths in the Mixed Alkali System

10.5 Quantitative Characterization of the Slowing Down of the Dynamics

10.5.1 Combination of Fractal Dimension of Paths and Walks

10.5.2 Fractal Dimension of Jump Path and Walks

10.5.3 Rapid Decrease of the Diffusivity in the Dilute Foreign Alkali Region

10.5.4 Multifractality of Jump Path and Walks Percolative Aspect of MAE

10.5.5 Self-Part of the Van Hove Functions

10.6 Haven Ratio in the Mixed Alkali System

10.7 MAE as a Cooperativity Blockage

10.7.1 Relation with Confined Systems

10.8 Motions Among Unlike Ion Sites

10.8.1 Loosening of the Structure in the Mixed Alkali System

10.8.2 Internal Friction Peak in the Mixed Alkali System

10.9 Temporal and Spatial Aspect of MAE

10.10 Role of the Motion of Matrix Oxygen Atoms

10.11 Comparison with Other Methods

10.12 Conclusion

References

11 Molecular Dynamics Simulations of Ionic Liquids

11.1 Brief Introduction and History

11.2 MD Study of 1-Ethyl-3-Methyl-Imidazolium Nitrate (EMIM-NO₃)

11.2.1 Heterogeneity in the Structure of Ionic Liquid, EMIM-NO₃

11.2.2 Pair Correlation Functions

11.3 Several Time Regions in MSD
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4</td>
<td>Temperature Dependence of the Dynamics</td>
<td>491</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Origin of the Fragile Behaviors Characterized by the Temperature Dependence of the Diffusivity</td>
<td>491</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Fragility Characterized by the Different Slopes of Two Regions</td>
<td>492</td>
</tr>
<tr>
<td>11.5</td>
<td>Dynamic Heterogeneity in Ionic Liquid</td>
<td>494</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Heterogeneity Observed in the Trajectories of Ions</td>
<td>494</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Fractal Dimension of the Random Walks</td>
<td>494</td>
</tr>
<tr>
<td>11.5.3</td>
<td>Self-Part of the Van Hove Functions</td>
<td>497</td>
</tr>
<tr>
<td>11.5.4</td>
<td>Distinct-Part of the Van Hove Function</td>
<td>500</td>
</tr>
<tr>
<td>11.6</td>
<td>Multifractal Structure of the Density Profile</td>
<td>500</td>
</tr>
<tr>
<td>11.7</td>
<td>Multifractality in the Walk</td>
<td>502</td>
</tr>
<tr>
<td>11.8</td>
<td>Intermediate Scattering Function, $F_s(k,t)$</td>
<td>504</td>
</tr>
<tr>
<td>11.9</td>
<td>Deterministic Nature of the System: Phase Space Plot</td>
<td>506</td>
</tr>
<tr>
<td>11.10</td>
<td>Thermodynamic Scaling of Ionic Liquids</td>
<td>508</td>
</tr>
<tr>
<td>11.10.1</td>
<td>Comparison Between Corresponding States on a Master Curve</td>
<td>510</td>
</tr>
<tr>
<td>11.10.2</td>
<td>Potential of Mean Force</td>
<td>511</td>
</tr>
<tr>
<td>11.11</td>
<td>Temperature Dependence of Topological Structures of Ionic Liquids</td>
<td>512</td>
</tr>
<tr>
<td>11.11.1</td>
<td>Rigidity and Soft Percolation of Fictive Networks Found in the Ionic Liquid Based Glass</td>
<td>513</td>
</tr>
<tr>
<td>11.11.2</td>
<td>Existence of T_B and T_g in the System Volume and in the Diffusivity</td>
<td>516</td>
</tr>
<tr>
<td>11.11.3</td>
<td>Structural Change at T_g as a Rigidity Percolation: Number of Bonds and Degree of Freedom of the Whole System</td>
<td>518</td>
</tr>
<tr>
<td>11.11.4</td>
<td>Geometrical Degree of the Freedom in the Polyhedron</td>
<td>519</td>
</tr>
<tr>
<td>11.11.5</td>
<td>Temperature Dependence of the Distributions of N_v</td>
<td>520</td>
</tr>
<tr>
<td>11.11.6</td>
<td>Changes of the Distribution of N_v and N_b at Around T_B and T_g</td>
<td>520</td>
</tr>
<tr>
<td>11.11.7</td>
<td>The Concept of Rigidity and Soft Percolation</td>
<td>521</td>
</tr>
<tr>
<td>11.11.8</td>
<td>Relation of the Structure of Polyhedron with the Dynamics</td>
<td>522</td>
</tr>
<tr>
<td>11.11.9</td>
<td>Relation with Thermodynamic Scaling</td>
<td>523</td>
</tr>
<tr>
<td>11.11.10</td>
<td>Formation of the Infinitive Networks and the Glass Transition</td>
<td>523</td>
</tr>
</tbody>
</table>
11.12 Further Details of the Dynamic Heterogeneity

11.12.1 Accelerated Dynamics in Ionic Systems 524
11.12.2 Origin of the Lévy Distribution: Fractional Fokker-Planck Equation 526

11.13 Acceleration of the Motion on Surfaces 527

11.14 Conclusion .. 528

References ... 528

12 Practical Introduction to the MD Simulations of Ionic Systems

12.1 Examples of MD Simulation of Ionic System 533
12.2 Example 2: Analysis of the Lévy Flight and Lévy (Alpha Stable) Distribution 539
12.2.1 Example of Analysis for a Mobile Ion 539
12.2.2 Log Return of Data ... 539
12.2.3 Comparison of the Distribution of Log-Return and the Fitted Curve 540
12.2.4 Further Analysis of Cumulative Distribution and Comparison of Lévy (Alpha Stable with $\alpha < 2$) and Gaussian Distribution (Alpha Stable with $\alpha = 2$) .. 540
12.2.5 Free CDF Files with Manipulation 541
12.3 Example 3: Examining Movies ... 543

12.4 Fundamental Usage of MD Programs 543
12.4.1 INPUT of the MD Programs .. 543
12.4.2 Preparation of Initial Configurations for Crystals 544
12.4.3 Data Base for Crystal Structures 546
12.4.4 Initial Configurations for Melts and Glasses 547

12.5 Output of the MD Programs .. 548
12.6 Software for MD Simulations .. 548
12.7 Software for Visualization .. 549

References ... 550

13 Some Applications and Further Problems

13.1 Fabrication of Porous Structures in Molecular Dynamics Simulations: For Design and Examination of Solid State Batteries 551
13.1.1 Modeling of Porous Silica in MD .. 552
13.1.2 MD Simulations of Porous Lithium Disilicate 553

13.2 Application of Thermodynamic Scaling to the Material Design 554

13.3 Applicability of Effective Potential Parameters for Coarse-Grained Dynamics 555
13.4 Application of the Mixed Alkali Effect 556
13.4.1 Low Dielectric Loss Glasses 556
13.4.2 Modification of Surface by Ion Exchange Process 556
13.4.3 Toward the Design of the Materials with High Conductivity 557

13.5 Relation with the Glass Transition Problems 558
13.5.1 What Is a Cause of the Rapid Slowing Down of Dynamics Near T_g? 559
13.5.2 Is the Slowing Down of Dynamics Comes Without Any Change in the Structure? 559
13.5.3 How Structural (Topological) Changes Are Related to the Dynamics? 560
13.5.4 Is the Structure and Dynamics of the Glass Random or Fractal? 561
13.5.5 How Can We Detect Non-Equilibrated Relaxation Before the Glass Transition? 561

References ... 561

Afterword .. 563
Appendix ... 569
References .. 593
Index .. 595
Dynamics of Glassy, Crystalline and Liquid Ionic Conductors
Experiments, Theories, Simulations
Habasaki, J.; Leon, C.; Ngai, K.L.
2017, XIX, 600 p. 249 illus., 196 illus. in color., Hardcover
ISBN: 978-3-319-42389-0