Contents

1 Introduction .......................................... 1
References ............................................ 6

2 Theories and Models of Ion Diffusion ....................... 9
  2.1 Linear Response Theory ........................................ 9
    2.1.1 Linear Response Function ............................... 10
    2.1.2 The Kramers-Kronig Relations ......................... 13
    2.1.3 The Fluctuation-Dissipation Theorem ..................... 14
  2.2 Dielectric Relaxation ...................................... 15
    2.2.1 Debye Relaxation ....................................... 16
    2.2.2 Non-Debye Relaxation .................................. 18
  2.3 Conductivity Relaxation .................................... 21
    2.3.1 Electric Modulus Formalism ............................ 21
    2.3.2 Conductivity Formalism ................................. 23
    2.3.3 Empirical Description of Ion Dynamics.
      Distribution of Relaxation Times ...................... 24
    2.3.4 Ion Diffusion Mechanisms ............................ 32
    2.3.5 Temperature Dependence of Ion Diffusion .......... 34
    2.3.6 One Dimensional Random-Hopping Model
      for Ionic Conductivity .................................. 35
  2.4 Non-Gaussianity of Dynamics ............................ 37
    2.4.1 Relation Between Jump Rate and Relaxation
      Rate in the Stretched Exponential Decay:
      From the Modeling by the Molecular Dynamics
      Simulations ............................................. 38
    2.4.2 Relation Between Power Law Exponent
      of MSD and Characteristics of Jump Motions .......... 41
    2.4.3 Relation Between the Theory of Fractal
      and the Characteristics of Jumps ..................... 43
2.4.4 Distribution of Length Scales and Lévy Distribution ............................. 44
2.4.5 Heterogeneity and Multifractal Mixing of Different Length Scales ............... 45
2.4.6 Separation of Exponents Having Different Origins .................................. 45
2.5 Models of Ion Dynamics .................................................................................. 46
2.5.1 Random Barrier Model .................................................................................. 46
2.5.2 The MIGRATION Concept ............................................................................. 50
2.5.3 The Coupling Model ...................................................................................... 53
References ............................................................................................................. 57

3 Experimental Probes for Ion Dynamics ............................................................ 61
3.1 Impedance Spectroscopy ................................................................................. 61
3.1.1 Description of the Technique ......................................................................... 61
3.1.2 IS Data Analysis ............................................................................................. 66
3.1.3 Experimental Considerations ......................................................................... 73
3.2 Nuclear Magnetic Resonance .......................................................................... 78
References ............................................................................................................. 86

4 Electrical Response of Ionic Conductors ......................................................... 89
4.1 Electrical Conductivity Relaxation in Glassy, Crystalline and Molten Ionic Conductors ................................................................. 89
4.1.1 Frequency Dependence of Ionic Conductivity Relaxation ................................ 92
4.1.2 Dissection into Contributions from Different Time/Frequency Regimes .......... 98
4.2 Comparison of Methods for Analysis of Data ................................................ 101
4.2.1 The Electric Modulus ...................................................................................... 101
4.2.2 Jonscher Expression and Augmented Jonscher Expression to Fit \( \sigma(f) \) ........... 119
4.3 Relevance of Theories and Models to Experimental Findings .......................... 122
4.3.1 Random Barrier Models ............................................................................... 123
4.3.2 Jump Relaxation Models and the MIGRATION Concept .................................. 124
4.3.3 Comparison of MC with CM ......................................................................... 128
4.3.4 Monte Carlo and Molecular Dynamics Simulations ....................................... 130
4.4 The Coupling Model (CM) ............................................................................. 130
4.4.1 The CM Based on Universal Statistics of Energy Levels ............................... 131
4.4.2 Tracing the Key Result of the CM, \( W(t) = W_0(\omega_c t)^{-n} \), Back to R. Kohlrausch .... 136
4.4.3 Coupling Model from Classical Chaos ......................................................... 137
4.4.4 Relaxation of Interacting Arrays of Phase-Coupled Oscillators ...................... 138
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Experimental Verifications of the CM</td>
<td>140</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Direct Crossover</td>
<td>141</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Q-Dependence of $\tau^*$ and $\tau_0$</td>
<td>143</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Evidence of Crossover from Other Experiments in Ionic Conductors</td>
<td>147</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Quasielastic Neutron Scattering Studies of Glassy Ionic Conductors</td>
<td>151</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Change of Temperature Dependence of $\sigma_{dc}$ at High Temperatures</td>
<td>152</td>
</tr>
<tr>
<td>4.5.6</td>
<td>The Non-Arrhenius Intermediate Temperature Region</td>
<td>156</td>
</tr>
<tr>
<td>4.5.7</td>
<td>Anomalously Short Prefactor $\tau^*_\infty$</td>
<td>157</td>
</tr>
<tr>
<td>4.5.8</td>
<td>The Meyer-Neldel Rule or Compensation Law</td>
<td>160</td>
</tr>
<tr>
<td>4.5.9</td>
<td>Anti Meyer-Neldel Rule</td>
<td>161</td>
</tr>
<tr>
<td>4.5.10</td>
<td>Computer Simulations of Energy Barrier of YSZ</td>
<td>162</td>
</tr>
<tr>
<td>4.5.11</td>
<td>Temperature Independence of $\Delta_\epsilon$ in YSZ</td>
<td>164</td>
</tr>
<tr>
<td>4.6</td>
<td>Oxide-Ion Dynamics and Diffusion in RE$<em>2$Zr$</em>{2-y}$Ti$_y$O$_7$ Conductors</td>
<td>166</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Cation Size Effects in Oxygen ion Dynamics</td>
<td>171</td>
</tr>
<tr>
<td>4.7</td>
<td>Li-Ion Dynamics and Diffusion in Li$<em>{3x}$La$</em>{2/3-x}$TiO$_3$</td>
<td>175</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Unusual Non-Arrhenius dc Conductivity of LLTO</td>
<td>182</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Accounting for the Non-Arrhenius T-Dependence of $\sigma_{dc}(T)$ from n(T) by the CM</td>
<td>184</td>
</tr>
<tr>
<td>4.8</td>
<td>Caged Dynamics and Nearly Constant Loss in Ionic Conductors</td>
<td>185</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Caged Ion Dynamics, Properties and Termination by the Primitive Relaxation</td>
<td>188</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Ruling Out the Augmented Jonscher Expression</td>
<td>191</td>
</tr>
<tr>
<td>4.9</td>
<td>Evidences of Evolution of Ion Dynamics with Time</td>
<td>193</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Colloidal Particles Suspension by Confocal Microscopy Experiment</td>
<td>193</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Molecular Dynamics Simulations of Li$_2$SiO$_3$</td>
<td>195</td>
</tr>
<tr>
<td>4.9.3</td>
<td>Experimental Conductivity Relaxation Data</td>
<td>200</td>
</tr>
<tr>
<td>4.10</td>
<td>Properties of Caged Ion Dynamics, Primitive Relaxation, and Many-Ion $\sigma_\beta(\omega)$ Are Related</td>
<td>204</td>
</tr>
<tr>
<td>4.10.1</td>
<td>Derivation of the Weak T-Dependence of the NCL</td>
<td>204</td>
</tr>
<tr>
<td>4.10.2</td>
<td>Anti-Correlation of NCL with $E_a$ or $E_\sigma$</td>
<td>206</td>
</tr>
<tr>
<td>4.10.3</td>
<td>Correlation of $E_a$ or $E_\sigma$ with $(1-n)$</td>
<td>210</td>
</tr>
<tr>
<td>4.10.4</td>
<td>Origin of Correlation of $E_a$ with $(1-n)$, and Anti-Correlation with NCL</td>
<td>211</td>
</tr>
</tbody>
</table>
4.11 The Mixed Alkali Effect ........................................ 217
4.11.1 Immobilization of Li Ions by Frozen Li Ions in the Confining Walls .................... 222
4.11.2 Comparison of Electrical Relaxation with Mechanical Relaxation .................... 229
4.12 Haven Ratio, Breakdown of Nernst-Einstein Relation ................ 229
4.12.1 The Haven Ratio for Mixed Alkali Glasses ................ 231
4.13 Relating Macroscopic Electrical Conductivity to Microscopic Movements of Ions ................. 232
4.13.1 An Experimental Verification ..................... 239
4.14 Relation to Other Chapters .......................................... 239
References .......................................................... 239

5 NMR Experiments in Ionic Conductors .................................... 251
5.1 Ion Dynamics Studied by NMR Techniques .................... 252
5.2 Relation Between SLR and ECR in Ionic Conductors ........ 259
5.2.1 Absence of Difference Between $^{11}$B Spin Relaxation and Li Ion Conductivity Relaxation in (LiCl)$_{0.6}$(Li$_2$O)$_{0.7}$(B$_2$O$_3$) ........................................ 264
5.2.2 Quantitative Difference Between the Values of $\tau_s$ and $\tau_M$ ..................... 265
References .......................................................... 273

6 Nanoionics .......................................................... 277
6.1 Space Charge Effects .................................................. 278
6.2 Oxide Thin Films and Interfaces ...................................... 287
6.3 Nano Ion Dynamics ..................................................... 293
6.3.1 Oxygen Ion Dynamics in YSZ Thin Films ................... 294
6.3.2 Interfaces of Epitaxial ZrO$_2$:Y$_2$O$_3$/SrTiO$_3$ Heterostructures ......................... 296
6.3.3 Computer Simulations Data Compared with Theoretical Interpretation .......... 298
6.4 Nanoionics for Energy ............................................. 300
6.5 Outlook ................................................................. 303
References .......................................................... 306

7 Ionic Liquids: Physics Bridging Two Fields .......................... 311
7.1 Introduction ......................................................... 311
7.2 Invariance of the Structural $\alpha$-Dispersion to Various Combinations of $T$ and $P$ with $\tau_\sigma$ Kept Constant .................. 312
7.3 Invariance of the Conductivity $\alpha$-Dispersion of ILs to Various Combinations of $T$ and $P$ with $\tau_{\sigma\alpha}$ Kept Constant .................. 315
7.3.1 0.4Ca(NO$_3$)$_2$-0.6KNO$_3$ (CKN) .................. 315
7.3.2 Narrowing of the Conductivity Relaxation Dispersion of CKN on Decoupling: An Observation Challenging for Explanation .... 319
7.3.3 Analogy from the IL, 1-Butyl-3-Methylimidazolium Hexafluorophosphate (BMIM-PF$_6$) 322
7.3.4 1-Butyl-1-Methylpyrrolidinium Bis[Oxalato] Borate (BMP-BOB) 324
7.3.5 1-Hexyl-3-Methylimidazolium Chloride 325
7.3.6 1-Methyl-3-Trimethylisilylmethylimidazolium Tetrafluoroborate ([Si-MIm][BF$_4$]) 326
7.3.7 Caged Ion Dynamics in Ionic Liquids 329
7.3.8 Protic Ionic Liquids 330

7.4 Thermodynamic ($TV^\gamma$) Scaling of $\alpha$-Relaxation Time and Viscosity of Non-ionic Glass-Formers 332
7.4.1 Causality Implies the $\rho^\gamma/T$-Dependence Originates from That of the Primitive or JG $\beta$-Relaxation 336
7.4.2 No Correlation Between $\gamma$ and the Characteristics ($n$, $m_P$, $\xi_{het}$) of the $\alpha$-Relaxation: Another Support of Its $\rho^\gamma/T$-Dependence Originating from That of $\tau_0$ or $\tau_{JG}$ 336

7.5 Thermodynamic ($\rho^\gamma/T$) Scaling of Conductivity $\alpha$-Relaxation Time and Viscosity of IL 338
7.5.1 RTIL [C$_8$MIM][NTf$_2$] 338
7.5.2 RTIL [C$_4$mim][NTf$_2$] 341
7.5.3 RTIL BMP-BOB 342

7.6 Thermodynamic Scaling of Viscosity of RTILs 343

7.7 Scaling of Other ILs 343

7.8 Molecular Dynamics Simulations of Thermodynamic Scaling of EMIM$^+$-NO$_3^-$ 345

7.9 Molecular Dynamics Simulations of Thermodynamic Scaling of 2Ca(NO$_3$)$_2$·3KNO$_3$ (CKN) 346

7.10 Molecular Dynamics Simulation: Indication of $T^{-1}V^{-\gamma}$-Dependence Originating from the Primitive or JG $\beta$-Relaxation 349

7.11 Conclusion 351

References 352

8 Molecular Dynamics Simulations 355
8.1 Molecular Dynamics Simulations in Ionic Systems 355
8.1.1 Purpose and Goals of the Molecular Dynamics Simulations 355
8.1.2 History of MD Simulations in Ionics 356

8.2 Methods in Molecular Dynamics Simulations 358
8.2.1 Classical and Ab Initio Methods 359
8.2.2 Models Used in MD Simulations 361
8.2.3 Units Used in MD and Combination of Potential Models 367
8.2.4 Solving the Equation of Motion 368
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.5 Treatment of Coulombic Force</td>
<td>370</td>
</tr>
<tr>
<td>8.2.6 Multipole Expansion and Tree Method</td>
<td>374</td>
</tr>
<tr>
<td>8.2.7 General Description of the Multipole Expansion</td>
<td>375</td>
</tr>
<tr>
<td>8.2.8 Multipoles as an Origin of Nearly Constant Loss (NCL) of Caged Ion Dynamics</td>
<td>376</td>
</tr>
<tr>
<td>8.2.9 Treatment of Rotational Motion</td>
<td>377</td>
</tr>
<tr>
<td>8.2.10 Ensembles Used for MD Simulations</td>
<td>381</td>
</tr>
<tr>
<td>8.2.11 Parrinello-Rahman Methods</td>
<td>385</td>
</tr>
<tr>
<td>8.2.12 High Performance Computation</td>
<td>385</td>
</tr>
<tr>
<td>8.3 Physical Quantity and Properties Obtained from MD Simulations</td>
<td>387</td>
</tr>
<tr>
<td>8.3.1 Structural Properties</td>
<td>388</td>
</tr>
<tr>
<td>8.3.2 Dynamic Properties</td>
<td>391</td>
</tr>
<tr>
<td>8.3.3 Space-Time Correlations</td>
<td>394</td>
</tr>
<tr>
<td>8.3.4 Thermal Properties</td>
<td>396</td>
</tr>
<tr>
<td>8.3.5 Thermodynamic Scaling and Other Scaling Rules</td>
<td>396</td>
</tr>
<tr>
<td>8.3.6 Further Possible Analyses</td>
<td>397</td>
</tr>
<tr>
<td>8.4 Errors in the Molecular Dynamics Simulations</td>
<td>397</td>
</tr>
<tr>
<td>8.4.1 Errors Occurred in the Numerical Treatment</td>
<td>397</td>
</tr>
<tr>
<td>8.4.2 Numerical Errors Occurred During MD Runs</td>
<td>398</td>
</tr>
<tr>
<td>8.4.3 Propagation of Small Error and Lyapunov Exponent</td>
<td>399</td>
</tr>
<tr>
<td>8.4.4 Backward Error Analysis of the Averaged Properties</td>
<td>400</td>
</tr>
<tr>
<td>8.5 Treatments of Slow and Fast Dynamics in Ionic Systems</td>
<td>401</td>
</tr>
<tr>
<td>8.5.1 System Size Requirements (Relationship with Fragility and Confinement)</td>
<td>401</td>
</tr>
<tr>
<td>8.5.2 Equilibration and Cooling Schedules in the MD Simulation of Glasses</td>
<td>404</td>
</tr>
<tr>
<td>8.5.3 Ensembles Used in the Simulations of Super-Cooled Liquid, Glass, and in the Treatment of Glass Transition</td>
<td>404</td>
</tr>
<tr>
<td>8.5.4 Sampling of Structures and Dynamics Near the Glass Transition Regimes and Glasses</td>
<td>405</td>
</tr>
<tr>
<td>8.5.5 Non-ergodicity of the Dynamics for Network Former</td>
<td>406</td>
</tr>
<tr>
<td>8.5.6 Relation Between Ion Dynamics and Chaos</td>
<td>406</td>
</tr>
<tr>
<td>8.5.7 Sampling of Rare Event with Dynamic Heterogeneity-Ergodicity of Ionic Motion</td>
<td>407</td>
</tr>
<tr>
<td>8.6 Non-equilibrium Molecular Dynamics and Reverse Non-equilibrium Molecular Dynamics</td>
<td>410</td>
</tr>
<tr>
<td>References</td>
<td>410</td>
</tr>
</tbody>
</table>
9 Molecular Dynamics Simulation of Silicate Glasses ........................................ 415
  9.1 Derivation of the Potential Parameters from Ab
    Initio Calculations .............................................. 415
  9.1.1 Quality of the Parameters .................................. 419
  9.2 Characteristics of the Structure .................................. 420
    9.2.1 Statistics of the Framework Structures ................. 420
    9.2.2 Changes in the Qn Structure Under Pressure ............ 423
    9.2.3 Time Dependence of the Qn Distribution
      After Compression ............................................ 425
    9.2.4 Comparison with Experimental
      Qn Distribution ........................................... 425
  9.3 Are the Structures Random or Fractal? ...................... 427
  9.4 Temporal and Spatial Aspects of the Dynamics ............. 427
    9.4.1 Mean Squared Displacement (MSD)
      of Li Ions in Lithium Metasilicate ....................... 427
    9.4.2 Several Time Regions in the Mean Squared
      Displacement .............................................. 428
    9.4.3 Intermediate Scattering Functions ..................... 433
    9.4.4 Time Regions Found in Lithium
      Disilicate Glass ........................................... 434
  9.5 Dynamic Heterogeneities ...................................... 435
    9.5.1 The Non-Gaussian Parameter ............................. 437
    9.5.2 Some Characteristics of the Dynamics
      in NCL Region ............................................... 438
    9.5.3 Characteristics of Jump and Separation
      of Temporal and Spatial Term ............................. 440
    9.5.4 Heterogeneity Shown by Fractal Dimension
      Analysis of Trajectories ................................. 442
    9.5.5 Different View for the Temporal
      and Spatial Terms ........................................ 443
  9.6 Comparison with Other Systems ............................... 444
  9.7 Cooperativity of the Motion and Vacancy Dynamics ........ 445
  9.8 Mixing of Heterogeneity and Its Life Time ................ 447
  9.9 Comparison of Dynamics Obtained by MD
      and Experiments ........................................... 448
    9.9.1 High Temperature Region ............................... 448
    9.9.2 Low and Medium Temperature Region ..................... 449
    9.9.3 Role of Different Cooling Rate ......................... 449
    9.9.4 Composition Dependence of the Diffusion
      Coefficient of Li Ions in Lithium Silicate ............... 451
  9.10 Comparison of Dynamics in Crystal and Glass ............. 452
    9.10.1 Role of Defects in the Crystal and Glass ............. 454
  9.11 Conclusion .................................................. 455
References ................................................................ 456
10 The Mixed Alkali Effect Examined by Molecular Dynamics Simulations ................................................. 459
10.1 Overview and Brief History ................................................................. 459
10.2 Evidence of the Interception of Jump Paths Among the Ion Sites of Different Kinds of Alkali Ions: Distinct-Part of the Van Hove Function ........................................ 461
10.3 Composition Dependence of the Mixed Alkali Effect ...................................... 463
10.4 Visualization of the Ion Trajectories and Paths in the Mixed Alkali System ................. 464
10.5 Quantitative Characterization of the Slowing Down of the Dynamics ......................... 466
10.5.1 Combination of Fractal Dimension of Paths and Walks .................................. 466
10.5.2 Fractal Dimension of Jump Path and Walks .............................................. 467
10.5.3 Rapid Decrease of the Diffusivity in the Dilute Foreign Alkali Region ....................... 469
10.5.4 Multifractality of Jump Path and Walks ................................................ 470
10.5.5 Self-Part of the Van Hove Functions ...................................................... 471
10.6 Haven Ratio in the Mixed Alkali System .................................................. 472
10.7 MAE as a Cooperativity Blockage .................................................................. 473
10.7.1 Relation with Confined Systems .................................................................. 474
10.8 Motions Among Unlike Ion Sites .................................................................... 475
10.8.1 Loosening of the Structure in the Mixed Alkali System .................................... 475
10.8.2 Internal Friction Peak in the Mixed Alkali System .......................................... 476
10.9 Temporal and Spatial Aspect of MAE .................................................................. 477
10.10 Role of the Motion of Matrix Oxygen Atoms .................................................. 478
10.11 Comparison with Other Methods .................................................................. 478
10.12 Conclusion ................................................................................................. 479
References ......................................................................................................... 480

11 Molecular Dynamics Simulations of Ionic Liquids ................................................................. 483
11.1 Brief Introduction and History ......................................................................... 483
11.2 MD Study of 1-Ethyl-3-Methyl-Imidazolium Nitrate (EMIM-NO₃) ...................... 486
11.2.1 Heterogeneity in the Structure of Ionic Liquid, EMIM-NO₃ ......................... 487
11.2.2 Pair Correlation Functions ......................................................................... 487
11.3 Several Time Regions in MSD ......................................................................... 489
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4</td>
<td>Temperature Dependence of the Dynamics</td>
<td>491</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Origin of the Fragile Behaviors Characterized by the Temperature Dependence of the Diffusivity</td>
<td>491</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Fragility Characterized by the Different Slopes of Two Regions</td>
<td>492</td>
</tr>
<tr>
<td>11.5</td>
<td>Dynamic Heterogeneity in Ionic Liquid</td>
<td>494</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Heterogeneity Observed in the Trajectories of Ions</td>
<td>494</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Fractal Dimension of the Random Walks</td>
<td>494</td>
</tr>
<tr>
<td>11.5.3</td>
<td>Self-Part of the Van Hove Functions</td>
<td>497</td>
</tr>
<tr>
<td>11.5.4</td>
<td>Distinct-Part of the Van Hove Function</td>
<td>500</td>
</tr>
<tr>
<td>11.6</td>
<td>Multifractal Structure of the Density Profile</td>
<td>500</td>
</tr>
<tr>
<td>11.7</td>
<td>Multifractality in the Walk</td>
<td>502</td>
</tr>
<tr>
<td>11.8</td>
<td>Intermediate Scattering Function, $F_s(k,t)$</td>
<td>504</td>
</tr>
<tr>
<td>11.9</td>
<td>Deterministic Nature of the System: Phase Space Plot</td>
<td>506</td>
</tr>
<tr>
<td>11.10</td>
<td>Thermodynamic Scaling of Ionic Liquids</td>
<td>508</td>
</tr>
<tr>
<td>11.10.1</td>
<td>Comparison Between Corresponding States on a Master Curve</td>
<td>510</td>
</tr>
<tr>
<td>11.10.2</td>
<td>Potential of Mean Force</td>
<td>511</td>
</tr>
<tr>
<td>11.11</td>
<td>Temperature Dependence of Topological Structures of Ionic Liquids</td>
<td>512</td>
</tr>
<tr>
<td>11.11.1</td>
<td>Rigidity and Soft Percolation of Fictive Networks: Infinitive Networks Found in the Ionic Liquid Based Glass</td>
<td>513</td>
</tr>
<tr>
<td>11.11.2</td>
<td>Existence of $T_B$ and $T_g$ in the System Volume and in the Diffusivity</td>
<td>516</td>
</tr>
<tr>
<td>11.11.3</td>
<td>Structural Change at $T_g$ as a Rigidity Percolation: Number of Bonds and Degree of Freedom of the Whole System</td>
<td>518</td>
</tr>
<tr>
<td>11.11.4</td>
<td>Geometrical Degree of the Freedom in the Polyhedron</td>
<td>519</td>
</tr>
<tr>
<td>11.11.5</td>
<td>Temperature Dependence of the Distributions of $N_V$</td>
<td>520</td>
</tr>
<tr>
<td>11.11.6</td>
<td>Changes of the Distribution of $N_V$ and $N_b$ at Around $T_B$ and $T_g$</td>
<td>520</td>
</tr>
<tr>
<td>11.11.7</td>
<td>The Concept of Rigidity and Soft Percolation</td>
<td>521</td>
</tr>
<tr>
<td>11.11.8</td>
<td>Relation of the Structure of Polyhedron with the Dynamics</td>
<td>522</td>
</tr>
<tr>
<td>11.11.9</td>
<td>Relation with Thermodynamic Scaling</td>
<td>523</td>
</tr>
<tr>
<td>11.11.10</td>
<td>Formation of the Infinitive Networks and the Glass Transition</td>
<td>523</td>
</tr>
</tbody>
</table>
Further Details of the Dynamic Heterogeneity

11.12.1 Accelerated Dynamics in Ionic Systems

11.12.2 Origin of the Lévy Distribution: Fractional Fokker-Planck Equation

11.13 Acceleration of the Motion on Surfaces

11.14 Conclusion

References

Practical Introduction to the MD Simulations of Ionic Systems

12.1 Examples of MD Simulation of Ionic System

12.2 Example 2: Analysis of the Lévy Flight and Lévy (Alpha Stable) Distribution

12.2.1 Example of Analysis for a Mobile Ion

12.2.2 Log Return of Data

12.2.3 Comparison of the Distribution of Log-Return and the Fitted Curve

12.2.4 Further Analysis of Cumulative Distribution and Comparison of Lévy (Alpha Stable with $\alpha < 2$) and Gaussian Distribution (Alpha Stable with $\alpha = 2$)

12.2.5 Free CDF Files with Manipulation

12.3 Example 3: Examining Movies

12.4 Fundamental Usage of MD Programs

12.4.1 INPUT of the MD Programs

12.4.2 Preparation of Initial Configurations for Crystals

12.4.3 Data Base for Crystal Structures

12.4.4 Initial Configurations for Melts and Glasses

12.5 Output of the MD Programs

12.6 Software for MD Simulations

12.7 Software for Visualization

References

Some Applications and Further Problems

13.1 Fabrication of Porous Structures in Molecular Dynamics Simulations: For Design and Examination of Solid State Batteries

13.1.1 Modeling of Porous Silica in MD

13.1.2 MD Simulations of Porous Lithium Disilicate

13.2 Application of Thermodynamic Scaling to the Material Design

13.3 Applicability of Effective Potential Parameters for Coarse-Grained Dynamics
13.4 Application of the Mixed Alkali Effect ....................... 556
  13.4.1 Low Dielectric Loss Glasses ............................. 556
  13.4.2 Modification of Surface by Ion Exchange Process ............. 556
  13.4.3 Toward the Design of the Materials with High Conductivity .......... 557
13.5 Relation with the Glass Transition Problems .................. 558
  13.5.1 What Is a Cause of the Rapid Slowing Down of Dynamics Near T_g? .... 559
  13.5.2 Is the Slowing Down of Dynamics Comes Without Any Change in the Structure? 559
  13.5.3 How Structural (Topological) Changes Are Related to the Dynamics? .......... 560
  13.5.4 Is the Structure and Dynamics of the Glass Random or Fractal? ................. 561
  13.5.5 How Can We Detect Non-Equilibrated Relaxation Before the Glass Transition? 561

References ........................................................................... 561

Afterword ............................................................................. 563
Appendix ............................................................................... 569
References ........................................................................... 593
Index .................................................................................... 595
Dynamics of Glassy, Crystalline and Liquid Ionic Conductors
Experiments, Theories, Simulations
Habasaki, J.; Leon, C.; Ngai, K.L.
2017, XIX, 600 p. 249 illus., 196 illus. in color., Hardcover
ISBN: 978-3-319-42389-0