Chirality is a fascinating geometrical property: We have two objects that look similar, because they are mirror images of each other, but when we try to superpose them, we realize that they are not the same. This observation can also be confirmed experimentally: There are several spectroscopy methods that are sensitive to the handedness of such chiral objects. Therefore, the two enantiomorphs of a chiral object differ not only from a mathematical, but also from a physical point of view. Although chirality seems to be a very special kind of missing symmetry, many structures that can be found in nature—from small biomolecules to the shape of snail shells—are chiral.

Most research regarding the properties of chiral objects has been conducted in the field of stereochemistry thus far. In chemistry, molecules are commonly chiral, and their handedness is of utmost importance for their interaction. In physics, however, chirality is not that commonly dealt with. In many optics textbooks, for example, the discussion is limited to the rotation of linear polarization in chiral media.

In the field of plasmonics, which deals with sub-wavelength metallic nanostructures of arbitrarily complex shape, it is well-known that geometry and shape of such structures control their optical response. Therefore, the combination with chirality, which is also a geometrical property, seems to be natural.

In this book, we will discuss the chiral properties of nanoscopic plasmonic system. This discussion not only covers the origin of chiral far-field responses such as circular dichroism or optical activity, but also examines the chiral near-field response. To obtain this, we discuss the chiral properties of electromagnetic fields and study how plasmonic nanostructures can affect them. Interestingly, we find that these responses are rather different: No direct connection between the common chiral far-field responses and the occurrence of chiral near-fields can be drawn.

This book is based on my Ph.D. thesis “Chiral Plasmonic Near-Field Sources: Control of Chiral Electromagnetic Fields for Chiroptical Spectroscopies,” which has been conducted at the University of Stuttgart in the group of Prof. Dr. Harald Giessen [1]. I would like to thank Prof. Giessen for his ongoing support of my work and many helpful scientific discussions. Furthermore, I would like to thank Jun.-Prof. Dr. Maria Fyta for co-supervising my work and Prof. Dr. Martin Dressel for heading the examination committee.
I thank Prof. Giessen for initializing the contact with Springer, which finally led to this book. Compared to my thesis, the book has been updated and extended to cover the latest research in the highly active field of chiral plasmonics. Parts of this book have already been published in scientific journals. Chapter 5 and parts of Chap. 6 are based on [2]. Chapter 7 (except for the second part of Sect. 7.3) is adapted with permission from [3]. Copyright 2012 Optical Society of America. Sections 8.1 and 8.2 are adapted with permission from [4]. Copyright (2014) American Chemical Society. Section 8.3 is adapted with permission from [5]. Copyright (2016) American Chemical Society.

I am thankful for the support of the co-authors of these articles: Nader Engheta, Daniel Drégely, Harald Giessen, Mario Hentschel, Xinghui Yin, and Thomas Weiss. Additionally, I acknowledge helpful scientific discussions with Adam Cohen, Uday Chettiar, Jens Dorfmüller, Alexander Govorov, Maxim Nesterov, and my present and former colleagues at the 4th Physics Institute. Furthermore, I would like to thank Thomas Weiss for his support regarding the usage of his Fourier modal method code and Frank Demming from CST AG for his support regarding CST Microwave Studio.

I would like to thank Sven Moritz Hein for incredible help with the visualization in POV-Ray. Additionally, I thank Dominik Flöß for taking the photographs shown in Fig. 2.2.

I am thankful to Claus Ascheron from Springer for his support of this project. Additionally, I thank Mario Hentschel, Thomas Weiss, John Williamson, and Xinghui Yin for proofreading of parts of the manuscript.

Last but not least, I wish to thank my parents and my brother and his family for their support—and Michèle, of course!

Stuttgart, Germany

Martin Schäferling

References

Chiral Nanophotonics
Chiral Optical Properties of Plasmonic Systems
Schäferling, M.
2017, XV, 159 p. 79 illus., 75 illus. in color., Hardcover
ISBN: 978-3-319-42263-3