Contents

1 Introduction .. 1
 1.1 Analog IC Design Automation 1
 1.1.1 Robustness in Analog IC Design 3
 1.1.2 Computer Assisted Analog IC Design 5
 1.2 Analog IC Design Flow .. 5
 1.3 Automatic Analog Circuit-Level Sizing 7
 1.4 Contributions to the State-of-the-Art 8
 1.5 Conclusion .. 10
References .. 10

2 Previous Works on Automatic Analog IC Sizing 13
 2.1 Analog IC Sizing Automation: An Historical Perspective 13
 2.2 Optimization-Based Circuit Sizing 14
 2.2.1 Optimization Techniques Applied to Analog Circuit
 Sizing ... 14
 2.2.2 Circuit’s Performance Evaluation 16
 2.2.3 Commercial Solutions 19
 2.3 Robust Circuit Optimization 19
 2.3.1 Worst-Case Optimization 21
 2.3.2 Commercial Solutions 23
 2.4 Layout-Aware Sizing .. 23
 2.5 Summary of the Automatic Circuit Sizing Approaches 26
 2.5.1 Contributions .. 30
 2.6 Conclusions .. 31
References .. 32

3 AIDA-C Architecture .. 39
 3.1 AIDA Environment ... 39
 3.2 AIDA-C Architecture ... 41
 3.2.1 Setup and Monitoring 41
 3.2.2 Circuit Optimizer 42
3.3 AIDA-C’s Analog IC Design Flow .. 43
 3.3.1 Circuit Sizing Setup ... 44
 3.3.2 Layout-Aware Sizing Setup (Optional) 48
 3.3.3 Graphical User Interface ... 51
 3.3.4 Sizing ... 54
 3.3.5 Reuse ... 57
 3.4 Conclusions ... 60
References ... 61

4 Multi-objective Optimization Kernel 63
 4.1 Circuit Sizing as Multi-objective Optimization Problem 63
 4.2 Optimization Kernel .. 66
 4.2.1 NSGA-II ... 68
 4.2.2 MOSA .. 70
 4.2.3 MOPSO ... 72
 4.2.4 Multi-kernel Algorithms 74
 4.3 Enhancing the Optimization with Machine Learning 77
 4.3.1 Sampling the Design Space Using DOE 77
 4.3.2 Gradient Model .. 80
 4.4 Conclusions ... 85
References ... 85

5 AIDA-C Circuit Sizing Results .. 87
 5.1 Evolutionary Parameters Impact 87
 5.1.1 Crossover and Mutation Rates 87
 5.1.2 Population Size and Number of Generations 91
 5.2 Comparing the Evaluation Strategies 94
 5.2.1 Amplifier with Gain Enhancement Using VCs 95
 5.2.2 Fully Differential Telescopic Amplifier 95
 5.3 Gradient Model ... 98
 5.3.1 Folded Cascode Amplifier 98
 5.3.2 Amplifier with Gain Enhancement Using VCs 99
 5.3.3 Low Noise Amplifier .. 101
 5.4 Comparison of the Rival Kernels for Analog IC Sizing Optimization .. 105
 5.4.1 Single-Stage Amplifier with Gain Enhancement Using VCs 105
 5.4.2 Two-Stage Miller Amplifier 108
 5.4.3 LC-Voltage Controlled Amplifier 112
 5.5 Conclusion .. 117
References ... 118

6 Layout-Aware Circuit Sizing .. 121
 6.1 Motivation for Layout-Aware Circuit Sizing 121
 6.2 Floorplan-Aware Circuit Sizing 124
6.2.1 Floorplan-Aware Flow .. 124
6.2.2 Analog Module Layout Generator 126
6.2.3 Floorplanner .. 129
6.3 Layout-Aware Circuit Sizing 134
 6.3.1 Electromigration-Aware Global Router 135
 6.3.2 Parasitic Devices Extraction 136
 6.3.3 Back-Annotation and Simulation of the Parasitics 141
6.4 Conclusions .. 145
References .. 145

7 AIDA-C Layout-Aware Circuit Sizing Results 147
 7.1 Single Stage Folded Cascode Amplifier with Bias 147
 7.2 Two-Stage Miller Amplifier 150
 7.2.1 Floorplan-Aware Design 150
 7.2.2 Layout-Aware Sizing 159
 7.3 Two-Stage Folded Cascode Amplifier 165
 7.4 Single Stage Amplifier with Gain Enhancement Using VCs 168
 7.4.1 Floorplan-Aware Sizing 169
 7.4.2 Layout-Aware Sizing 171
 7.5 Conclusion .. 174
References .. 174

8 Conclusions ... 177
 8.1 Conclusions .. 177
 8.2 Future Work .. 178

Index .. 181
Automatic Analog IC Sizing and Optimization
Constrained with PVT Corners and Layout Effects
Lourenço, N.; Martins, R.; Gomes Horta, N.C.
2017, XXVII, 182 p. 112 illus., 90 illus. in color.,
Hardcover
ISBN: 978-3-319-42036-3