Contents

1 Introduction ... 1
 1.1 Micro from Macro.. 1
 1.2 Outline of the Topics ... 4
 1.3 About Citations ... 6
 1.4 Conventions .. 6
 1.5 Measure Units .. 7
References .. 8

2 Hot Big Bang Model .. 13
 2.1 Cosmic Expansion and Cosmological Principle 14
 2.1.1 The Universe at Large Scales 14
 2.1.2 Friedmann–Lemaître–Robertson–Walker
 Background .. 19
 2.2 Einstein and Continuity Equations 24
 2.2.1 Energy Conditions .. 26
 2.3 Perfect Fluid .. 27
 2.3.1 Scalar Field .. 30
 2.4 Friedmann Equations ... 31
 2.5 Content of the Universe .. 33
 2.5.1 Dust and Radiation .. 33
 2.5.2 Hot Big Bang and the Big-Bang Problem 36
 2.5.3 Dark Energy and the cosmological Constant
 Problem ... 39
 2.5.4 Spatial Curvature and Topology 43
 2.6 An Obscure Big Picture ... 44
 2.7 Problems and Solutions .. 46
References .. 58

3 Cosmological Perturbations ... 63
 3.1 Metric Perturbations .. 64
 3.1.1 Linearized Einstein Equations 64
 3.1.2 Gauge Invariance and Gauge Fixing 66
3.1.3 Cosmological Horizons ... 66
3.1.4 Separate Universe Approach 68

3.2 Linear Tensor Perturbations .. 70
3.2.1 Transverse-Traceless Gauge 70
3.2.2 Equation of Motion ... 71
3.2.3 Mukhanov–Sasaki Equation and Solution 71
3.2.4 Discovery of Gravitational Waves 74

3.3 Scalar Perturbations .. 76
3.3.1 Non-linear Perturbations 76
3.3.2 Non-linear Perturbations at Large Scales 77
3.3.3 Linear Perturbations at Large Scales 78

3.4 Gaussian Random Fields .. 81
3.4.1 Power Spectrum .. 82
3.4.2 Bispectrum and Trispectrum 83

3.5 Problems and Solutions .. 84

References ... 88

4 Cosmic Microwave Background 91
4.1 Cosmic Background Radiation 93
4.1.1 Boltzmann Equation and Spectral Distortions 94
4.1.2 Last-Scattering Surface 97

4.2 Temperature Anisotropies: Formalism 97
4.2.1 Spherical Harmonics 97
4.2.2 Gaussian Spectrum 99
4.2.3 Ergodic Hypothesis and Cosmic Variance 102

4.3 Temperature Power Spectrum 104
4.3.1 What we Observe 104
4.3.2 Angular Scales .. 106
4.3.3 Sachs–Wolfe Plateau ($\ell \lesssim 60$) 110
4.3.4 Acoustic Peaks ($60 \lesssim \ell \lesssim 1000$) 114
4.3.5 Damping Tail ($\ell \gtrsim 1000$) 117
4.3.6 Secondary Anisotropies 118

4.4 Cosmological Parameters and Observational Constraints .. 119
4.4.1 Shape of the Angular Spectrum and Parameters ... 119

4.5 Polarization .. 126
4.5.1 Formalism ... 128
4.5.2 Spectra .. 130
4.5.3 What we Observe 131

4.6 Non-Gaussianity ... 135
4.6.1 Bispectrum ... 135
4.6.2 Trispectrum ... 137
5 Inflation

5.1 Problems of the Hot Big Bang Model

5.1.1 Planck and GUT Scale

5.1.2 Flatness Problem

5.1.3 Horizon Problem

5.1.4 Monopole Problem

5.1.5 Primordial Seeds Problem

5.2 Inflationary Mechanism

5.2.1 Solution of the Flatness Problem

5.2.2 Solution of the Horizon Problem

5.2.3 Solution of the Monopole Problem

5.2.4 Solution of the Primordial Seeds Problem

5.3 Cold Big Bang

5.3.1 Equation of State

5.3.2 Chaotic Inflation

5.3.3 Reheating

5.3.4 Observable Inflation

5.3.5 Timeline of the Early Universe

5.4 Scalar Field: Background Dynamics

5.4.1 Hamilton–Jacobi Formalism

5.4.2 Slow-Roll Parameters

5.4.3 Inflationary Attractor

5.5 Models of Inflation

5.5.1 Large-Field Models

5.5.2 Small-Field Models

5.5.3 Multi-field Inflation

5.6 First Glimpse of the Quantum Universe

5.6.1 Decoherence

5.6.2 From Quantum Fields to Classical Spectra

5.6.3 Choice of Vacuum

5.6.4 Mukhanov–Sasaki Equation Revisited

5.6.5 Eternal Inflation

5.7 Cosmological Spectra

5.7.1 Gaussianity

5.7.2 Linear Tensor Perturbations

5.7.3 Linear Scalar Perturbations

5.7.4 Consistency Relations and Lyth Bound

5.8 Non-Gaussianity

5.8.1 Stochastic Inflation

5.8.2 Multi-field Non-Gaussianity
5.9 Observational Constraints on Inflation .. 213
 5.9.1 Temperature Spectra .. 213
 5.9.2 Polarization ... 216
 5.9.3 Non-Gaussianity .. 217
5.10 Unsolved and New Problems .. 218
 5.10.1 Graceful Entry Problem .. 218
 5.10.2 Graceful Exit Problem ... 219
 5.10.3 Trans-Planckian Problem .. 219
 5.10.4 Naturalness or Model-Building Problem 220
5.11 The Inflaton and Particle Physics ... 221
 5.11.1 Not Only Scalars .. 221
 5.11.2 Higgs Inflation .. 222
5.12 Supersymmetry and Supergravity ... 224
 5.12.1 Global Supersymmetry .. 225
 5.12.2 Supergravity ... 228
 5.12.3 η-problem .. 229
 5.12.4 Inflation in Supergravity ... 230
5.13 Problems and Solutions .. 237

References ... 239

6 Big-Bang Problem ... 261
6.1 Spacetimes and Singularities .. 262
 6.1.1 Globally Hyperbolic Spacetimes 262
 6.1.2 Focusing Theorems ... 265
 6.1.3 Classifications of Singularities 267
6.2 Singularity Theorems .. 269
 6.2.1 Hawking–Penrose Theorems .. 269
 6.2.2 Borde–Vilenkin Theorems .. 272
 6.2.3 Borde–Guth–Vilenkin Theorem 273
 6.2.4 An Undecided Issue .. 275
6.3 BKL Singularity ... 278
 6.3.1 Tetrads and Bianchi Models .. 278
 6.3.2 Kasner Metric .. 280
 6.3.3 Generalized Kasner Metric .. 282
 6.3.4 Mixmaster Dynamics .. 284
 6.3.5 BKL Conjecture ... 291
6.4 Problems and Solutions ... 293
References ... 295

7 Cosmological Constant Problem ... 301
7.1 The Problem in Field Theory ... 302
 7.1.1 Spontaneous Symmetry Breaking and Dynamical Λ 302
 7.1.2 Zero-Point Energy and Higher Loops 305
 7.1.3 Supersymmetry and Supergravity 308
9 Canonical Quantum Gravity .. 407
9.1 Canonical Variables in General Relativity 408
 9.1.1 First-Order Formalism and Parity 408
 9.1.2 Hamiltonian Analysis 414
 9.1.3 Ashtekar–Barbero Variables 424
 9.1.4 ADM Variables .. 426
9.2 Wheeler–DeWitt Equation ... 428
 9.2.1 Superspace and Quantization 429
 9.2.2 Semi-classical States 432
 9.2.3 Boundary Conditions 437
9.3 Some Features of Loop Quantum Gravity 439
9.4 Cosmological Constant Problem 442
 9.4.1 Chern–Simons State 443
 9.4.2 Λ as a Condensate? 447
9.5 Problems and Solutions .. 451
References.. 459

10 Canonical Quantum Cosmology .. 467
10.1 Mini-superspace .. 468
 10.1.1 Classical FLRW Hamiltonian 469
10.2 Wheeler–DeWitt Quantum Cosmology 471
 10.2.1 de Sitter Solutions and Probability of Inflation 473
 10.2.2 Massless Scalar Field and Group Averaging 476
 10.2.3 Quantum Singularity 480
 10.2.4 Cosmological Constant and the Multiverse 482
 10.2.5 Perturbations and Inflationary Observables 484
10.3 Loop Quantum Cosmology .. 489
 10.3.1 Classical FLRW Variables and Constraints 490
 10.3.2 Quantization and Inverse-Volume Spectrum 493
 10.3.3 Mini-superspace Parametrization 495
 10.3.4 Quantum Hamiltonian Constraint 496
 10.3.5 Models with Curvature or a Cosmological Constant ... 500
 10.3.6 Homogeneous Effective Dynamics 501
 10.3.7 Singularity Resolved? 508
 10.3.8 Lattice Refinement: Quantum Corrections Revisited 510
 10.3.9 Perturbations and Inflationary Observables 516
 10.3.10 Inflation in Other Approaches 525
 10.3.11 Is There a Bounce? 526
10.4 Problems and Solutions .. 528
References.. 531
11 Cosmology of Quantum Gravities

11.1 Hausdorff and spectral dimension .. 545
11.2 Asymptotic Safety .. 547

- 11.2.1 Framework ... 548
- 11.2.2 Cosmology .. 551
11.3 Causal Dynamical Triangulations 555

- 11.3.1 Framework ... 555
- 11.3.2 Cosmology .. 561
11.4 Spin Foams ... 563

- 11.4.1 Framework ... 563
- 11.4.2 Cosmology .. 564
11.5 Group Field Theory .. 569

- 11.5.1 Framework ... 569
- 11.5.2 Cosmology .. 572
11.6 Causal Sets ... 584

- 11.6.1 Framework ... 584
- 11.6.2 Cosmology .. 588
11.7 Non-commutative Spacetimes 591

- 11.7.1 Framework ... 591
- 11.7.2 Cosmology .. 593
11.8 Non-local Gravity .. 596

- 11.8.1 Non-locality ... 596
- 11.8.2 Framework ... 599
- 11.8.3 Cosmology .. 603
11.9 Comparison of Quantum-Gravity Models 604

References .. 607

12 String Theory

12.1 Bosonic String .. 627

- 12.1.1 Classical Free Strings and Branes 627
- 12.1.2 D-Branes ... 631
- 12.1.3 Quantum Strings and Critical Dimension 632
- 12.1.4 Interactions .. 637
- 12.1.5 Low-Energy Limit ... 638
- 12.1.6 String Field Theory 640

12.2 Superstring .. 642

- 12.2.1 Action .. 643
- 12.2.2 Quantization ... 645
- 12.2.3 Type-I Superstring .. 646
- 12.2.4 Type-II Superstrings 647
- 12.2.5 Interactions and Anomaly Cancellation 648
- 12.2.6 Heterotic Superstrings 649
- 12.2.7 Massless Spectra and Low-Energy Limits 651
- 12.2.8 Branes .. 653
- 12.2.9 Superstring Field Theory 655
<table>
<thead>
<tr>
<th>12.3</th>
<th>Compactification</th>
<th>656</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3.1</td>
<td>T-Duality</td>
<td>656</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Spontaneous Compactification</td>
<td>658</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Calabi–Yau Spaces and Orbifolds</td>
<td>658</td>
</tr>
<tr>
<td>12.3.4</td>
<td>Cycles and Fluxes</td>
<td>662</td>
</tr>
<tr>
<td>12.3.5</td>
<td>Moduli</td>
<td>663</td>
</tr>
<tr>
<td>12.3.6</td>
<td>Stacking Branes</td>
<td>668</td>
</tr>
<tr>
<td>12.3.7</td>
<td>Flux Compactification</td>
<td>669</td>
</tr>
<tr>
<td>12.3.8</td>
<td>String Theory and the Standard Model</td>
<td>671</td>
</tr>
<tr>
<td>12.3.9</td>
<td>Anti-de Sitter Vacua</td>
<td>671</td>
</tr>
<tr>
<td>12.4</td>
<td>Dualities and M-Theory</td>
<td>678</td>
</tr>
<tr>
<td>12.5</td>
<td>Problems and Solutions</td>
<td>682</td>
</tr>
<tr>
<td>References</td>
<td>683</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13</th>
<th>String Cosmology</th>
<th>701</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>String Landscape</td>
<td>703</td>
</tr>
<tr>
<td>13.1.1</td>
<td>de Sitter Vacua</td>
<td>705</td>
</tr>
<tr>
<td>13.1.2</td>
<td>Cosmological Constant</td>
<td>709</td>
</tr>
<tr>
<td>13.1.3</td>
<td>Open Problems</td>
<td>714</td>
</tr>
<tr>
<td>13.2</td>
<td>Inflation in the Landscape</td>
<td>715</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Single-Field Inflation</td>
<td>716</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Large-Field Models and the Weak Gravity Conjecture</td>
<td>718</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Multi-field Inflation</td>
<td>719</td>
</tr>
<tr>
<td>13.2.4</td>
<td>Moduli Problem and η-Problem</td>
<td>720</td>
</tr>
<tr>
<td>13.3</td>
<td>Size Moduli Inflation</td>
<td>720</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Large-Volume Inflation</td>
<td>721</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Volume-Modulus Inflation</td>
<td>725</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Fluxless Inflation</td>
<td>727</td>
</tr>
<tr>
<td>13.4</td>
<td>Axion Inflation</td>
<td>728</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Racetrack Axion Inflation</td>
<td>729</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Axion Valley</td>
<td>730</td>
</tr>
<tr>
<td>13.4.3</td>
<td>N-flation</td>
<td>732</td>
</tr>
<tr>
<td>13.4.4</td>
<td>Aligned and Hierarchical Axion Inflation</td>
<td>734</td>
</tr>
<tr>
<td>13.4.5</td>
<td>Monodromy Inflation</td>
<td>735</td>
</tr>
<tr>
<td>13.4.6</td>
<td>Problems with Axion Inflation and Ways Out</td>
<td>740</td>
</tr>
<tr>
<td>13.5</td>
<td>Slow-Roll D-Brane Inflation</td>
<td>742</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Early Brane-Inflation Models</td>
<td>742</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Warped D-Brane Inflation and KLMT Model</td>
<td>744</td>
</tr>
<tr>
<td>13.5.3</td>
<td>Cosmological KLMT Dynamics</td>
<td>748</td>
</tr>
<tr>
<td>13.5.4</td>
<td>Refinements and Related Models</td>
<td>750</td>
</tr>
<tr>
<td>13.5.5</td>
<td>Why the Tensor Spectrum Is Small</td>
<td>753</td>
</tr>
<tr>
<td>13.6</td>
<td>DBI Inflation</td>
<td>754</td>
</tr>
<tr>
<td>13.6.1</td>
<td>Setting</td>
<td>754</td>
</tr>
<tr>
<td>13.6.2</td>
<td>UV Model</td>
<td>755</td>
</tr>
<tr>
<td>13.6.3</td>
<td>IR Model</td>
<td>758</td>
</tr>
</tbody>
</table>