Contents

1 Introduction to Measurement and Analysis 1
 1.1 Key Questions Regarding Health Systems Engineering 1
 1.1.1 What’s Wrong with Healthcare? 1
 1.1.2 Why Should “I” Fix It? 3
 1.1.3 What Is Health Systems Engineering? 3
 1.1.4 What Is “Analytics”? .. 4
 1.1.5 Is This an Individual Activity or an Organizational Activity? 5
 1.2 The Organization of This Book 5
 1.3 Review of Introductory Concepts 8
References .. 10

Part I Managing Data

2 Data and Types of Data .. 13
 2.1 What Are Data .. 13
 2.2 How Are Data Structured .. 15
 2.3 Visualizing Data ... 16
References .. 17

3 Software for Analytics .. 19
 3.1 Initial Overview of Software .. 19
 3.1.1 Excel ... 20
 3.1.2 Menu-Driven Statistical Software 21
 3.1.3 Advanced Analytical Software 21
 3.1.4 Middleware to Make R Usable 22
 3.2 Excel (and Concepts Essential to Using Excel) 22
 3.2.1 Excel as “HOME” .. 23
 3.2.2 Some Useful Cell Functions in Excel 23
3.3 Menu Methods in Excel
 3.3.1 HOME 26
 3.3.2 INSERT 28
 3.3.3 DATA 29
 3.3.4 Add-Ins 32
 3.3.5 Excel Summary 33
3.4 Returning to Data Analysis in Excel: The “Workhorse” 33
 3.4.1 Descriptive Statistics 34
3.5 Minitab 46
3.6 R, RExcel, and RCommander 56
3.7 Plotting 59
References 62

4 Measurement and Uncertainty 63
 4.1 The Stochastic Nature of Data 63
 4.1.1 The Distribution Functions of Data 64
 4.1.2 Understanding Uncertainty Requires
 Understanding DIKW 65
 4.2 Databases, Datasets, and Dataframes 66
 4.3 Missing Values 67
 4.4 Probability, Likelihood, and Odds 68
 4.5 Logit and Logistic 68
 4.6 Induction Versus Deduction 69
 4.7 Bias 70
 4.8 Residuals 70
 4.9 Central Tendency 72
 4.10 Variability 72
 4.11 Centering and Standardizing 73
 4.12 Homogeneity of Variances 74
 4.13 Quantile (QQ) and Other Useful Plots 74
 4.14 Likert Scales and Likert Plots 75
 4.15 A Summary for Preparing to Analyze a Dataset 76
Reference 77

Part II Applying a Scientific Approach to Data Analysis

5 Mathematical and Statistical Concepts in Data Analysis 81
 5.1 A Brief Introduction to Mathematics 81
 5.2 Vectors and Matrices 82
 5.3 Arrays and Data Frames 83
 5.4 Summary of Vector and Matrix Rules 83
 5.5 The Curse of Dimensionality and the Bias-Variance Trade-Off ... 84
 5.6 Factors That Degrade Models 85
 5.6.1 Cause and Effect 85
 5.6.2 Collinearity 86
 5.6.3 Proximity, Distances, and Similarities 87
Part III Techniques in Analysis

6 Analysis by Modeling Data .. 93
 6.1 Preparing to Build Models 93
 6.1.1 The Model in Light of the Hypothesis 94
 6.1.2 Planning to Validate a Model 94
 6.1.3 Validation Methods When Partitioning Isn’t Feasible . 95
 6.1.4 Planning to Combine Models: The Ensemble Approach ... 97
 6.2 Building Models: Supervised and Unsupervised
 Machine Learning ... 98
 6.2.1 Types of Models .. 98
 6.2.2 The Problem of Unbalanced Datasets 98
 References ... 100

7 Principles of Supervised Learning ... 101
 7.1 An Introduction to Supervised Machine Learning:
 Regression and Classification 101
 7.2 Setting the Stage for Regression: An Example 103
 7.2.1 Principles of Regression 104
 7.2.2 Assumptions of Regression 104
 7.2.3 Limitations of a Regression Model 105
 7.2.4 Alternative Approaches to Regression 106
 7.3 Supervised Learning with a Categorical Outcome:
 Classification ... 114
 7.3.1 Setting the Stage 114
 7.3.2 Hierarchical Classification 114
 7.3.3 Models Based on Bayesian (Conditional) Probability . 116
 7.3.4 Models Based on a Measure of Proximity
 (Distance or Similarity) 116
 7.3.5 Model-Based Classification Methods 117
 7.3.6 Other Classification Methods 119
 References ... 119

8 Unsupervised Machine Learning: Datasets Without Outcomes 121
 8.1 Unsupervised Learning: Models Without Outcomes 121
 8.2 Unsupervised Learning with Nominal Data:
 Association Analysis ... 122
 8.2.1 Setting the Stage 122
 8.2.2 Terminology in Association Analysis 122
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Unsupervised Learning with Quantitative Data: Clustering</td>
<td>125</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Setting the Stage</td>
<td>125</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Approaches to Clustering</td>
<td>126</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Validating Clusters</td>
<td>127</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>9</td>
<td>Survival Analysis</td>
<td>131</td>
</tr>
<tr>
<td>9.1</td>
<td>Concepts of Survival and Hazard</td>
<td>131</td>
</tr>
<tr>
<td>9.2</td>
<td>Censoring of Data</td>
<td>133</td>
</tr>
<tr>
<td>9.3</td>
<td>Biases Inherent in Survival Analysis: Lead-Time, Length, and Overdiagnosis Bias</td>
<td>133</td>
</tr>
<tr>
<td>9.4</td>
<td>Analytical Methods Based on Survival</td>
<td>134</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Kaplan-Meier Survival Analysis</td>
<td>134</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Comparing Survival Curves Using Log-Rank</td>
<td>136</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Evaluating Possible Contributors to Survival</td>
<td>136</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>137</td>
</tr>
<tr>
<td>10</td>
<td>Interpreting Outcomes: Cause and Effect and (p)-Values</td>
<td>139</td>
</tr>
<tr>
<td>10.1</td>
<td>The Problem with Assuming Cause and Effect</td>
<td>139</td>
</tr>
<tr>
<td>10.2</td>
<td>Simpson’s Paradox and Cause-Effect</td>
<td>140</td>
</tr>
<tr>
<td>10.3</td>
<td>(p)-Values and Types of Error</td>
<td>142</td>
</tr>
<tr>
<td>10.4</td>
<td>Type I and Type II Errors in Hypothesis Testing</td>
<td>142</td>
</tr>
<tr>
<td>10.5</td>
<td>Reinterpreting Sensitivity and Specificity</td>
<td>143</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>144</td>
</tr>
<tr>
<td>11</td>
<td>Useful Tools</td>
<td>145</td>
</tr>
<tr>
<td>11.1</td>
<td>Tools for Understanding and Applying Analytical Methods</td>
<td>145</td>
</tr>
<tr>
<td>11.2</td>
<td>Outlier/Anomaly Detection</td>
<td>145</td>
</tr>
<tr>
<td>11.3</td>
<td>Statistical Process Control</td>
<td>147</td>
</tr>
<tr>
<td>11.4</td>
<td>Failure Mode and Effect Analysis</td>
<td>149</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Summary</td>
<td>151</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>152</td>
</tr>
<tr>
<td>Appendix</td>
<td>Using R</td>
<td>153</td>
</tr>
<tr>
<td>Appendix A</td>
<td>A Few Basic Rules</td>
<td>153</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Interpreting the Documentation</td>
<td>154</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Linear Regression</td>
<td>155</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Selecting and Installing a Package</td>
<td>157</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Another Summary for Actually Using R</td>
<td>158</td>
</tr>
<tr>
<td>Glossary</td>
<td></td>
<td>161</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>175</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>177</td>
</tr>
</tbody>
</table>
Measurement and Analysis in Transforming Healthcare Delivery
Volume 1: Quantitative Approaches in Health Systems Engineering
Fabri, P.J.
2016, XIV, 181 p. 32 illus., 31 illus. in color., Hardcover
ISBN: 978-3-319-40810-1