Contents

1 Introduction .. 1
 1.1 Feedback in Engineering and Living Systems 1
 1.2 Benefits of Feedback Control 3
 1.3 Challenges of Feedback Control 6
 1.4 Feedback Turbulence Control is a Grand Challenge Problem 7
 1.5 Nature Teaches Us the Control Design 8
 1.6 Outline of the Book .. 9
 1.7 Exercises ... 9

2 Machine Learning Control (MLC) 11
 2.1 Methods of Machine Learning 12
 2.1.1 System Identification as Machine Learning 13
 2.1.2 Genetic Algorithms 14
 2.1.3 Genetic Programming 16
 2.1.4 Additional Machine Learning Methods 18
 2.2 MLC with Genetic Programming 19
 2.2.1 Control Problem .. 19
 2.2.2 Parameterization of the Control Law 20
 2.2.3 Genetic Programming as a Search Algorithm 21
 2.2.4 Initializing a Generation 23
 2.2.5 Evaluating a Generation 24
 2.2.6 Selecting Individuals for Genetic Operations 26
 2.2.7 Selecting Genetic Operations 27
 2.2.8 Advancing Generations and Stopping Criteria 30
 2.3 Examples ... 33
 2.3.1 Fitting a Function Through Data Points 33
 2.3.2 MLC Applied to Control a Dynamical System 36
 2.4 Exercises ... 44
 2.5 Suggested Reading .. 45
 2.6 Interview with Professor Marc Schoenauer 46
Contents

3 Methods of Linear Control Theory .. 49
 3.1 Linear Systems .. 50
 3.2 Full-State Feedback ... 51
 3.3 Sensor-Based State Estimation 53
 3.4 Sensor-Based Feedback .. 56
 3.5 System Identification and Model Reduction 58
 3.5.1 System Identification 59
 3.5.2 Eigensystem Realization Algorithm (ERA) 59
 3.5.3 Observer Kalman Filter Identification (OKID) 62
 3.6 Exercises ... 65
 3.7 Suggested Reading .. 67

4 Benchmarking MLC Against Linear Control 69
 4.1 Comparison of MLC with LQR on a Linear Oscillator 70
 4.2 Comparison of MLC with Kalman Filter on a Noisy Linear Oscillator .. 73
 4.3 Comparison of MLC with LQG for Sensor-Based Feedback 80
 4.4 Modifications for Small Nonlinearity 84
 4.5 Exercises ... 86
 4.6 Interview with Professor Shervin Bagheri 89

5 Taming Nonlinear Dynamics with MLC 93
 5.1 Generalized Mean-Field System 94
 5.2 Machine Learning Control 98
 5.2.1 Formulation of the Control Problem 98
 5.2.2 MLC Parameters ... 99
 5.2.3 MLC Results .. 99
 5.3 Derivation Outline for the Generalized Mean-Field Model ... 105
 5.4 Alternative Control Approaches 109
 5.4.1 Open-Loop Forcing 109
 5.4.2 Closed-Loop Forcing 111
 5.4.3 Short-Term Forcing 113
 5.5 Exercises ... 115
 5.6 Suggested Reading .. 116
 5.7 Interview with Professor Mark N. Glauser 117

6 Taming Real World Flow Control Experiments with MLC 121
 6.1 Separation Control Over a Backward-Facing Step 122
 6.1.1 Flow Over a Backward-Facing Step 122
 6.1.2 Experimental Setup at PMMH 123
 6.1.3 Results .. 127
 6.2 Separation Control of Turbulent Boundary Layers 128
 6.2.1 Separating Boundary Layers 128
 6.2.2 Experimental Setups at LML and PRISME 129
 6.2.3 Results .. 132
6.3 Control of Mixing Layer Growth
 6.3.1 Mixing Layer Flows
 6.3.2 Experimental Setup of the TUCOROM Wind Tunnel
 6.3.3 Results
6.4 Alternative Model-Based Control Approaches
6.5 Implementation of MLC in Experiments
 6.5.1 Real-Time Control Loop—from Sensors to Actuators
 6.5.2 MLC Implementation in the PMMH Flow Over a Backward-Facing Step
 6.5.3 MLC Implementation in the LML and PRISME Experiments
 6.5.4 MLC Implementation in the TUCOROM Experiment
6.6 Suggested Reading
6.7 Interview with Professor David Williams

7 MLC Tactics and Strategy
 7.1 The Ideal Flow Control Experiment
 7.2 Desiderata of the Control Problem—From the Definition to Hardware Choices
 7.2.1 Cost Function
 7.2.2 Actuators
 7.2.3 Sensors
 7.2.4 Search Space for Control Laws
 7.3 Time Scales of MLC
 7.3.1 Controller
 7.3.2 Response Time of the Plant
 7.3.3 Learning Time for MLC
 7.4 MLC Parameters and Convergence
 7.4.1 Convergence Process and Its Diagnostics
 7.4.2 Parameters
 7.4.3 Pre-evaluation
 7.5 The Imperfect Experiment
 7.5.1 Noise
 7.5.2 Drift
 7.5.3 Monitoring

8 Future Developments
 8.1 Methodological Advances of MLC
 8.2 System-Reduction Techniques for MLC—Coping with High-Dimensional Input and Output
 8.3 Future Applications of MLC
8.4 Exercises .. 182
8.5 Interview with Professor Belinda Batten 184

Glossary ... 189

Matlab® Code: OpenMLC 195

References ... 197

Index ... 209
Machine Learning Control – Taming Nonlinear Dynamics and Turbulence
Duriez, Th.; Brunton, S.; Noack, B.R.
2017, XX, 211 p. 73 illus., 58 illus. in color., Hardcover
ISBN: 978-3-319-40623-7