Contents

1 Introduction 1
 References 4

2 Theoretical Concepts of Scanning Probe Microscopy and Dynamic Light Scattering and Their Relation to the Study of Peptide Nanostructures 7
 2.1 Introduction 7
 2.2 Scanning Probe Microscopy 8
 2.2.1 Tip-Surface Interactions 8
 2.2.2 AFM Detection Modes 10
 2.3 Dynamic Light Scattering (DLS) 21
 2.4 Direct Imaging via AFM and Electron Microscopy Studies of Aβ1:42 and Their Findings 23
 2.5 Conclusion 25
 References 26

3 Alzheimer’s Disease and the Aggregation of Amyloid β 31
 3.1 Introduction 31
 3.2 Symptoms and Diagnosis 32
 3.3 Pathology and Physiology 33
 3.4 Epidemiology of AD 34
 3.5 Genetic Risk Factors Associated with AD 35
 3.6 The Amyloid Precursor Protein 36
 3.7 The Amyloid Cascade Hypothesis 39
 3.8 Oligomers of Aβ Are Likely to Be the Cause of AD Pathology 41
 3.9 Counter Arguments of the Amyloid Cascade Hypothesis 43
 3.10 Therapeutic Design for the Treatment of AD 44
 3.11 Amyloidosis as the Causative Factor in a Wide Range of Diseases 45
 3.12 Conclusions 46
 References 47
4 Experimental Methodology 53
 4.1 Introduction 53
 4.2 Materials and General Reagents. 53
 4.3 Nanomechanical Methods of SPM 54
 4.3.1 Nanomechanical Mapping of Peptides and Proteins via Scanning Probe Microscopy 54
 4.4 Spectroscopic Methods of SPM 60
 4.5 SPM Image Processing and Tip Convolution. 65
 4.6 Identification of Amyloidβ by Classical Biomedical Techniques 65
 4.6.1 Aggregation Conditions of Amyloid Peptides 65
 4.6.2 Monitoring of Aggregation State Using Thioflavin T Assay 66
 4.7 Dynamic Light Scattering 67
 4.7.1 Calibration of DLS System Using Gold Nanoparticles 69
 4.7.2 Experimental Setup for Temperature Dependent Measurements of LCST Compounds 69
 4.7.3 Characterization of Peptide Inhibitor NanoParticle Liposomes Using DLS 69
 4.7.4 Detection of Aβ1:40 and 1:42 Using DLS 69
 4.8 Substrate Modification for the Attachment of Amyloid Proteins 70
 4.8.1 Confirmation of Aβ Attachment to the Substrate 70
 4.9 Conclusion 71
References 72

5 Substrate Development of the Imaging of Amyloid Proteins with SPM Methods 73
 5.1 Introduction 73
 5.2 Muscovite Mica as a Standard SPM Substrate 74
 5.3 Incubation of Aβ1:42 in Volatile Buffers 75
 5.4 Chemical Modification of the Mica Substrate 76
 5.4.1 Incubation of Cleaved Mica with Divalent Ions 77
 5.4.2 Poly Prep Slides 77
 5.4.3 PLL-Mica 78
 5.5 Confirmation that PLL Does not Interfere with Fibre Morphology 80
 5.6 Confirmation of Attachment of Aβ1:42 to PLL Coated Mica. 81
 5.7 Conclusion 84
References 85

6 Scanning Probe Microscopy Methods of Imaging Amyloid Peptides During the Aggregation Process 87
 6.1 Introduction 87
 6.2 Tapping Mode Imaging of Aβ1:42—Detection of Metal Ions Induced Alterations in Morphology 88
6.3 UFM of Aβ1:42 ... 91
6.4 Determination of Fine Structural Details of Aβ1–42 with UFM .. 93
6.5 Reducing Friction Forces and Sample Damage Artefacts via UFM ... 95
6.6 Application of UFM Underliquid .. 97
6.7 Tip Only Ultrasonic Excitation—Waveguide-UFM; Further Enhancement of the Technique 99
6.8 Conclusion .. 101
References ... 102

7 Spectroscopy and Thermal SPM Methods of Studying Aβ1:42 ... 107
7.1 Introduction .. 107
7.2 Scanning Thermal Microscopy Nanoscale Mapping of Thermal Conductivity of Aβ1:42 108
7.3 SThM-IR Imaging at Fixed Wavelength of Aβ1:42 .. 110
7.4 Measurements of Aβ on Anasys “Nano-IR” System .. 114
7.5 Conclusion .. 115
References ... 117

8 The Application of Biophysical Techniques to the Study of the Inhibition of Aggregation of Aβ Using PINPs Liposomes .. 121
8.1 Introduction .. 121
8.2 Development of the RI-OR2-TAT PINP Inhibitor .. 122
8.3 Use of TM-AFM to Confirm the Inhibition of Aβ1:42 Using RI-TAT ... 123
8.4 Test Study of Non-biological Samples of Well-Defined Behaviours Using DLS 124
8.5 Characterisation of the Morphology and Sizes of PINPs Liposomes ... 127
8.6 AFM of Aβ1:42 Exposed to RI-OR2-TAT PINPs .. 129
8.7 Monitoring Aggregation of Aβ1:42 Using DLS .. 129
8.8 Inhibition of Aβ1:42 Aggregation Using RI-OR2-TAT PINPs as Detected by DLS 132
8.9 Conclusion .. 135
References ... 135

9 Conclusion and Future Perspectives .. 139
9.1 Conclusions .. 139
9.2 Future Perspectives .. 144
References ... 147