Contents

1 Basic Equations of Continuum Mechanics .. 1
 1.1 Kinematics ... 1
 1.1.1 Motion and Deformation Gradient ... 1
 1.1.2 Strain Measures .. 5
 1.1.3 Transformation of Vectors and Tensors ... 7
 1.1.4 Time Derivatives .. 9
 1.2 Balance Equations .. 12
 1.2.1 Balance of Mass .. 12
 1.2.2 Balance of Linear and Angular Momentum .. 13
 1.2.3 First Law of Thermodynamics .. 14
 1.2.4 Introduction of Different Stress Tensors and Stress Rates 15
 1.2.5 Balance Equations with Respect to Initial Configuration 18
 1.3 Weak Form of Equilibrium, Variational Principles .. 19
 1.3.1 Weak Form of Linear Momentum in the Initial Configuration 20
 1.3.2 Weak Form of Linear Momentum in the Current Configuration 22
 1.3.3 Variational Functionals .. 23
 1.3.4 Mathematical Formalism for Weak Forms ... 26

References .. 27

2 Automation of Research in Computational Modeling .. 29
 2.1 Introduction .. 30
 2.1.1 Abstract Symbolic Description of a Computational Model 31
 2.2 Advanced Software Tools and Techniques .. 33
 2.2.1 Symbolic and Algebraic Computational Systems ... 33
 2.2.2 Automatic Differentiation Tools .. 34
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3 Problem Solving Environments</td>
<td>34</td>
</tr>
<tr>
<td>2.2.4 Hybrid Approaches</td>
<td>35</td>
</tr>
<tr>
<td>2.3 Automatic Generation of Numerical Codes</td>
<td>36</td>
</tr>
<tr>
<td>2.4 Automatic Differentiation</td>
<td>38</td>
</tr>
<tr>
<td>2.4.1 Principles of Automatic Differentiation</td>
<td>38</td>
</tr>
<tr>
<td>2.4.2 Generalized Notation of Automatic Differentiation</td>
<td>40</td>
</tr>
<tr>
<td>2.4.3 Local Definition of AD Exceptions</td>
<td>43</td>
</tr>
<tr>
<td>2.4.4 Global Definition of AD Exceptions</td>
<td>44</td>
</tr>
<tr>
<td>2.4.5 Differentiation with Respect to Variables with an Index</td>
<td>44</td>
</tr>
<tr>
<td>2.5 Automatic Code Generation with AceGen</td>
<td>45</td>
</tr>
<tr>
<td>2.5.1 Hybrid Symbolic-Numerical System AceGen</td>
<td>45</td>
</tr>
<tr>
<td>2.5.2 Typical AceGen Automatic Code Generation Procedure</td>
<td>47</td>
</tr>
<tr>
<td>2.5.3 Simultaneous Simplification Procedure</td>
<td>49</td>
</tr>
<tr>
<td>2.5.4 Efficiency and Limitations of Automation of Computational Modeling</td>
<td>51</td>
</tr>
<tr>
<td>2.6 Automatic Differentiation and Finite Element Method</td>
<td>51</td>
</tr>
<tr>
<td>2.6.1 ADB Form of General Potential Form</td>
<td>53</td>
</tr>
<tr>
<td>2.6.2 ADB Form of General Weak Form</td>
<td>55</td>
</tr>
<tr>
<td>2.6.3 Representative Formulas for Residual and Tangent Matrix</td>
<td>58</td>
</tr>
<tr>
<td>2.7 Automatic Generation of FE User Subroutines</td>
<td>63</td>
</tr>
<tr>
<td>References</td>
<td>67</td>
</tr>
</tbody>
</table>

3 Automation of Primal Analysis | 69 |
3.1 Classification of Nonlinear Computational Problems | 69 |
3.1.1 Time-Independent Problems	72
3.1.2 Time-Dependent Problems	72
3.1.3 Time-Independent Coupled Problems	73
3.1.4 Time-Dependent Coupled Problems	75
3.2 Solution of Nonlinear Systems of Equations	76
3.2.1 Newton–Raphson Method	79
3.2.2 Automation of Solution of Time-Independent and Time-Dependent Problems	82
3.3 Solution of Coupled Nonlinear Systems of Equations	83
3.3.1 Solution of Locally Coupled Problems	85
3.3.2 Automation of the Solution of Locally Coupled Problems	87
3.3.3 Solution and Automation of Locally Coupled Problems Using Static Elimination of Local Unknowns	88
6 Continuum Elements .. 181
6.1 Requirements for Continuum Finite Elements 181
6.2 Two-Dimensional Elements 183
 6.2.1 Hyperelastic Triangular Element 183
 6.2.2 Axisymmetric Element 187
 6.2.3 Deformation Dependent Loads 189
6.3 Three-Dimensional Elements 193
 6.3.1 Hyperelastic Solid Elements 193
6.4 Mixed Elements for Incompressibility 198
 6.4.1 Mixed T2-P1 Element 200
 6.4.2 Mixed T2-P0 Element 203
 6.4.3 Mixed Q1-P0 Element 204
6.5 Enhanced Strain Element 206
 6.5.1 General Concept and Formulation 207
 6.5.2 Discretization of the Enhanced Strain Element 208
6.6 Example ... 211
References ... 213

7 Structural Elements ... 217
7.1 Nonlinear Truss Element 218
 7.1.1 Kinematics and Strains 218
 7.1.2 Constitutive Equations for the Truss 219
 7.1.3 Variational Formulation 221
 7.1.4 Finite-Element-Model 221
7.2 Two-Dimensional Geometrically Exact Beam Elements 224
 7.2.1 Two-Dimensional Beam Kinematics 225
 7.2.2 Constitutive Equations 226
 7.2.3 Strain Energy Function 227
 7.2.4 Finite Element Formulation for the Two-Dimensional Beam 227
 7.2.5 Two-Dimensional Beam Example 232
7.3 Three-Dimensional Geometrically Exact Beam Element 232
 7.3.1 Beam Kinematics 232
 7.3.2 Constitutive Equation and Variational Form 234
 7.3.3 Finite Element Formulation of the 3d-Beam 234
7.4 General Shell Element 238
 7.4.1 Introductory Remarks 239
 7.4.2 Shell Kinematics 242
 7.4.3 Parametrization of the Rotations 243
 7.4.4 Strain Energy Function 245
 7.4.5 Finite Element Formulation for a Shear Deformable Shell 246
 7.4.6 Example ... 250
References ... 252
8 Automation of Sensitivity Analysis

8.1 Introduction to Sensitivity Analysis

8.1.1 Parametrization of the Continuum and the Discretized Problem

8.1.2 Formulation and Solution of a Simple Sensitivity Problem

8.1.3 Introduction of Design Velocity Fields

8.1.4 Design Velocity Matrix

8.2 Classification and Formulation of Problems for Sensitivity Analysis

8.2.1 Classification of Sensitivity Problems

8.2.2 Classification of Sensitivity Design Velocity Fields

8.2.3 General Design Velocity Fields

8.2.4 Boundary Conditions Related Sensitivity Analysis

8.3 Solution and Automation of Sensitivity Problems

8.3.1 Direct Differentiation Method for Time-Independent Problems

8.3.2 Efficient Solution of Global Sensitivity Problem

8.3.3 Direct Differentiation Method for Time-Dependent Problems

8.3.4 Direct Differentiation Method for Time-Independent Locally Coupled Problems

8.3.5 Direct Differentiation Method for Time-Independent Gauss Point Coupled Problems

8.3.6 Direct Differentiation Method for Time-Dependent Locally Coupled Problems

8.3.7 Natural Boundary Condition Sensitivity Analysis

8.3.8 Implicit Dependency and the Cases with Multiple Domains

8.4 Generation of Sensitivity Analysis Related Subroutines

8.4.1 Axisymmetric, Hyper-Elastic Element for Primal and Sensitivity Analysis

8.4.2 Three-Dimensional, Elasto-Plastic Element for Primal and Sensitivity Analysis

8.5 Sensitivity Analysis of a Double-Layered Axisymmetric Cone by AceFEM

8.5.1 Definition of Sensitivity Parameters

8.5.2 Design Velocity Matrix

8.5.3 AceFEM Input for Primal and Sensitivity Analysis

References
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Erratum to: Automation of Finite Element Methods</td>
<td>E1</td>
</tr>
<tr>
<td>Appendix A: Mathematica and AceGen Syntax</td>
<td>311</td>
</tr>
<tr>
<td>Appendix B: Vectors and Tensors</td>
<td>323</td>
</tr>
<tr>
<td>Appendix C: Tables for Gauss Integration</td>
<td>337</td>
</tr>
<tr>
<td>Index</td>
<td>343</td>
</tr>
</tbody>
</table>
Automation of Finite Element Methods
Korelc, J.; Wriggers, P.
2016, XXVIII, 346 p. 46 illus., 10 illus. in color., Hardcover
ISBN: 978-3-319-39003-1