Preface

This volume is a collection of selected papers that were presented at the international conference *Model-Based Reasoning in Science and Technology. Models and Inferences: Logical, Epistemological, and Cognitive Issues* (MBR015_ITALY), held at the Centro Congressi Mediterraneo, Sestri Levante, Italy, June 25–27, 2015, chaired by Lorenzo Magnani.

Heidelberg/Berlin 2013), was based on the papers presented at the sixth “model-based reasoning” conference, held at Fondazione Mediaterraneo, Sestri Levante, Italy, June 2012.

The presentations given at the Sestri Levante conference explored how scientific thinking uses models and explanatory reasoning to produce creative changes in theories and concepts. Some speakers addressed the problem of model-based reasoning in technology and stressed issues such as the relationship between science and technological innovation. The study of diagnostic, visual, spatial, analogical, and temporal reasoning has demonstrated that there are many ways of performing intelligent and creative reasoning that cannot be described with the help only of traditional notions of reasoning such as classical logic. Understanding the contribution of modeling practices to discovery and conceptual change in science and in other disciplines requires expanding the concept of reasoning to include complex forms of creativity that are not always successful and can lead to incorrect solutions. The study of these heuristic ways of reasoning is situated at the crossroads of philosophy, artificial intelligence, cognitive psychology, and logic: that is, at the heart of cognitive science. There are several key ingredients common to the various forms of model-based reasoning. The term “model” comprises both internal and external representations. The models are intended as interpretations of target physical systems, processes, phenomena, or situations. The models are retrieved or constructed on the basis of potentially satisfying salient constraints of the target domain. Moreover, in the modeling process, various forms of abstraction are used. Evaluation and adaptation take place in light of structural, causal, and/or functional constraints. Model simulation can be used to produce new states and enable evaluation of behaviors and other factors. The various contributions of the book are written by interdisciplinary researchers who are active in the area of modeling reasoning and creative reasoning in logic, cognitive science, science and technology: the most recent results and achievements about the topics above are illustrated in detail in the papers.

The editors express their appreciation to the members of the scientific committee for their suggestions and assistance: Atocha Aliseda, Instituto de Investigaciones Filosóficas, Universidad Nacional Autónoma de Mexico (UNAM); Tommaso Bertolotti, Department of Humanities, Philosophy Section, University of Pavia, Italy; Silvana Borutti, Department of Humanities, Philosophy Section, University of Pavia, Italy; Otávio Bueno, Department of Philosophy, University of Miami, Coral Gables, USA; Mirella Capozzi, Department of Philosophy, University of Rome Sapienza, Rome, Italy; Walter Carnielli, Department of Philosophy, Institute of Philosophy and Human Sciences, State University of Campinas, Brazil; Claudia Casadio, Department of Philosophy, Education and Economical-Quantitative Sciences, University of Chieti-Pescara, Italy; Carlo Cellucci, Department of Philosophy, University of Rome Sapienza, Rome, Italy; Sanjay Chandrasekharan, Homi Bhabha Centre for Science Education, Tata Institute of Fundamental Research, India; Roberto Feltrero, Department of Logic, History and Philosophy of Science at UNED (Spanish Open University), Madrid, Spain; Steven French, Department of Philosophy, University of Leeds, Leeds, UK; Marcello Frixione, Department of Communication Sciences,
University of Salerno, Italy; Dov Gabbay, Department of Computer Science, King’s College, London, UK; Marcello Guarini, Department of Philosophy, University of Windsor, Canada; Ricardo Gudwin, Department of Computer Engineering and Industrial Automation, The School of Electrical Engineering and Computer Science, State University of Campinas, Brazil; Albrecht Heeffer, Centre for History of Science, Ghent University, Belgium; Michael Hoffmann, School of Public Policy, Georgia Institute of Technology, Atlanta, USA; Déicio Krause, Departamento de Filosofia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Ping Li, Department of Philosophy, Sun Yat-sen University, Guangzhou, P.R. China; Giuseppe Longo, Centre Cavaillès, République des Savoirs, CNRS, Collège de France et Ecole Normale Supérieure, Paris, France and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, USA; Angelo Loula, Department of Exact Sciences, State University of Feira de Santana, Brazil; Shangmin Luan, Institute of Software, The Chinese Academy of Sciences, Beijing, P.R. China; Rossella Lupacchini, University of Bologna, Bologna, Italy; Lorenzo Magnani, Department of Humanities, Philosophy Section and Computational Philosophy Laboratory, University of Pavia, Italy; Joke Meheus, Vakgroep Wijsbegeerte, Universiteit Gent, Gent, Belgium; Luís Moniz Pereira, Departamento de Informática, Universidade Nova de Lisboa, Portugal; Woosuk Park, Humanities and Social Sciences, KAIST, Guseong-dong, Yuseong-gu Daejeon, South Korea; Claudio Pizzi, Department of Philosophy and Social Sciences, University of Siena, Siena, Italy; Demetris Portides, Department of Classics and Philosophy, University of Cyprus, Nicosia, Cyprus; Joao Queiroz, Institute of Arts and Design, Federal University of Juiz de Fora, Brazil; Shahid Rahman, U.F.R. de Philosophie, University of Lille 3, Villeneuve d’Ascq, France; Oliver Ray, Department of Computer Science, University of Bristol, Bristol, UK; Colin Schmidt, Le Mans University and ENSAM-ParisTech, France; Gerhard Schurz, Institute for Philosophy, Heinrich-Heine University, Frankfurt, Germany; Cameron Shelley, Department of Philosophy, University of Waterloo, Waterloo, Canada; Nik Swoboda, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Madrid, Spain; Paul Thagard, Department of Philosophy, University of Waterloo, Waterloo, Canada; Barbara Tversky, Department of Psychology, Stanford University and Teachers College, Columbia University, New York, USA; Ryan D. Tweney, Emeritus Professor of Psychology, Bowling Green State University, Bowling Green, USA; Riccardo Viale, Scuola Nazionale dell’Amministrazione, Presidenza del Consiglio dei Ministri, Roma, and Fondazione Rosselli, Torino, Italy; John Woods, Department of Philosophy, University of British Columbia, Canada; and also to the members of the local scientific committee: Tommaso Bertolotti (University of Pavia), Selene Arfini (University of Chieti/Pescara), Pino Capuano (University of Pavia), and Elena Gandini (Across Events, Pavia).

Special thanks to Tommaso Bertolotti and Selene Arfini for their contribution in the preparation of this volume. The conference MBR015_ITALY, and thus indirectly this book, was made possible through the generous financial support of the MIUR (Italian Ministry of the University) and of the University of Pavia. Their
support is gratefully acknowledged. The preparation of the volume would not have been possible without the contribution of resources and facilities of the Computational Philosophy Laboratory and of the Department of Humanities, Philosophy Section, University of Pavia.

Other more technical formal papers presented at (MBR015_ITALY) will be published in a special issue of the *Logic Journal of the IGPL*, edited by L. Magnani and C. Casadio.

Pavia, Italy Lorenzo Magnani
Chieti, Italy Claudia Casadio
February 2016
Model-Based Reasoning in Science and Technology
Logical, Epistemological, and Cognitive Issues
Magnani, L.; Casadio, C. (Eds.)
2016, XII, 678 p. 44 illus., 9 illus. in color., Hardcover
ISBN: 978-3-319-38982-0