Preface

Unconventional computing is a science in flux. What is unconventional today will be conventional tomorrow. Designs being standard in the past are seen now as a novelty. Unconventional computing is a niche for interdisciplinary science, a cross-breed of computer science, physics, mathematics, chemistry, electronic engineering, biology, materials science and nanotechnology. The aims are to uncover and exploit principles and mechanisms of information processing in, and functional properties of, physical, chemical and living systems to develop efficient algorithms, design optimal architectures and manufacture working prototypes of future and emergent computing devices.

I invited world’s leading scientists and academicians to describe their vision of unconventional computing and to highlight the most promising directions of future research in the field. Their response was overwhelmingly enthusiastic: over 50 chapters were submitted spanning almost all the fields of natural and engineering sciences. Unable to fit over one and half thousands pages into one volume, I grouped the chapters as “theoretical” and “practical”. By “theoretical” I mean constructs and algorithms which have no immediate application domain and do not solve any concrete problems, yet they make a solid mathematical or philosophical foundation to unconventional computing. “Practical” includes experimental laboratory implementations and algorithms solving actual problems. Such a division is biased by my personal vision of the field and should not be taken as an absolute truth.

The first volume brings us mind-bending revelations from gurus in computing and mathematics. The topics covered are computability, (non-)universality and complexity of computation; physics of computation, analog and quantum computing; reversible and asynchronous devices; cellular automata and other mathematical machines; P-systems and cellular computing; spatial computation; chemical and reservoir computing. As a dessert we have two vibrant memoirs by founding fathers of the field.

The second volume is a tasty blend of experimental laboratory results, modelling and applied computing. Emergent molecular computing is presented by enzymatic
logical gates and circuits, and DNA nano-devices. Reaction-diffusion chemical computing is exemplified by logical circuits in Belousov–Zhabotinsky medium and geometrical computation in precipitating chemical reactions. Logical circuits realised with solitons and impulses in polymer chains show advances in collision-based computing. Photo-chemical and memristive devices give us a glimpse into the hot topics of novel hardware. Practical computing is represented by algorithms of collective and immune-computing and nature-inspired optimisation. Living computing devices are implemented in real and simulated cells, regenerating organisms, plant roots and slime moulds. Musical biocomputing and living architectures make the ending of our unconventional journey non-standard.

The chapters are self-contained. No background knowledge is required to enjoy the book. Each chapter is a treatise of marvellous ideas. Open the book at a random page and start reading. Abandon all stereotypes, conventions and rules. Enter the stream of unusual. Even a dead fish can go with the flow. You can too.

Bristol, UK
Andrew Adamatzky
March 2016
Advances in Unconventional Computing
Volume 1: Theory
Adamatzky, A. (Ed.)
2017, IX, 874 p. 367 illus., 209 illus. in color., Hardcover
ISBN: 978-3-319-33923-8