Chapter 2
Electrical Fluctuations in Colloid and Ionic Solutions

Abstract A method is developed in order to determine the natural electrical thermal fluctuations and its spectral distribution across two points of a solution of ions or spherical charged particles immersed in an ionic solution. The electrical equivalent between two points of a solution is considered as a capacitor and a resistor in parallel. The method is applied within the Debye–Hückel approximation (linearized Poisson–Boltzmann equation), although it is valid in general. Among the results is the diminution of electrical fluctuations as particle sizes increase, as a consequence large particles produce electrical stabilization in their neighbourhood. Also can be observed that fluctuations are not quite sensitive to ionic concentrations for large particles. When the size of the particles becomes negligible we obtain similar results with the already obtained using the method of the mode expansion.

Keywords Electrical fluctuations • Colloid fluctuations • Ionic fluctuations

2.1 Electrical Fluctuations in Solutions

We use the method developed in the former chapter to determine the natural electrical thermal fluctuations and its spectral distribution across two points of a solution of ions or electrical charged particles immersed in an ionic solution. We consider the solution path as a capacitor and a resistor in parallel.

The equations derived in the present work are valid for the following two cases:

a) A solution of spherical charged particles\(^1\) of radii \(a\) immersed in a symmetrical electrolyte solution of pointlike ions, Fig. 2.1a.

b) A symmetrical electrolyte solution which ions have a mean radius \(a\), Fig. 2.1b.

\(^{1}\)It can also be polyelectrolytes.
In both cases are estimated the electrical fluctuations and their spectral distributions.

The Debye–Hückel theory [2] for a symmetrical electrolyte of valence \(z \) with \(n \) ions per m\(^3\) gives for the potential, \(\psi(r) \) surrounding a spherical ion of charge \(Q = ze_0 \):

\[
\psi(r) = -\frac{1}{4\pi \varepsilon_0} \frac{ze_0}{r} \left(1 + \frac{1}{2} \left(a/a_0 \right)^2 \right) \nabla^2 \psi
\]
The SI system of units was employed throughout, in Eq. 2.1 \(\varepsilon_0 \) is the permittivity of vacuum (\(\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2\text{N}^{-1}\text{m}^{-2} \)), \(\varepsilon \) is the dielectric constant of the medium, \(e_0 \) the electron charge (\(e_0 = 1.602 \times 10^{-19} \text{ C} \)), \(a \) is the distance of closest approach equal to the sum of the radii of oppositely charged ions in contact (see Fig. 2.2) and \(\kappa \), called the

Debye–Hückel reciprocal length parameter, is given by:

\[
\kappa^2 = \frac{e_0^2}{\varepsilon \varepsilon_0 kT} \sum \eta_{i\alpha} z_i^2 = \frac{2000 e_0^2 N_A}{\varepsilon_0 k T} \left[\frac{1}{2} \sum c_i z_i^2 \right] \tag{2.2}
\]

The quantity \(I = \frac{1}{2} \sum c_i z_i^2 \) quantifies the charge in an electrolyte solution and is called the ionic strength after Lewis and Randall [8]. In case of a solution of a symmetrical \((\pm z)\) electrolyte we have

\[
\kappa^2 = \frac{2(e_0 z)^2}{\varepsilon_0 k T} n = \frac{2(e_0 z)^2}{\varepsilon_0 k T} N_A c \times 10^3 \tag{2.3}
\]

where \(k \) is Boltzmann constant (\(k = 1.381 \times 10^{-23} \text{ J/K} \)), \(T \) is the absolute temperature, \(N_A \) is Avogadro constant and \(c \) the solution concentration in \text{ moles/liter}.

Fig. 2.2 Representation of \(a \), the distance of closest approach
In Fig. 2.3a and b are shown κ and κ^{-1} versus c in mM for $z = 1$ and $z = 2$.

In case we have an spherical particle immersed in a solution of pointlike ions Eq. 2.1 remains the same, being Q the charge on the particle and a its radius (see, for instance, [20]).
Equation 2.1 is limited to solutions in which the ratio of the electrical to the thermal energy of the ions is very small, namely:

\[
\frac{ze_0\psi(r)}{kT} \ll 1 \tag{2.4}
\]

As the potential decreases quite fast from the surface of the particle and in order the former Eq. 2.3 be valid in the neighbourhood of it we can consider the inequality on the particle surface, namely:

\[
\frac{ze_0\psi(a)}{kT} = \frac{ze_0Q}{4\pi\epsilon\epsilon_0kT(1 + \kappa a)a} \ll 1 \tag{2.5}
\]

A good approximation is to consider the former equation equal to \(10^{-1}\) and obtain an upper limit to the charge on the particle, \(Q_{up}\), for a given value of \(a\) and \(\kappa\). This value of \(Q_{up}\) will satisfy the condition given by Eq. 2.4 in the neighbourhood solution surrounding the particle, namely:

\[
Q_{up} = 10^{-1}(ze_0)^{-1}4\pi\epsilon\epsilon_0kT(1 + \kappa a)a \tag{2.6}
\]

Of course the actual charge on the particle has to fulfill the condition:

\[
ze_0 \leq Q \leq Q_{up} \tag{2.7}
\]

In Fig. 2.4 is represented Eq. 2.6 for some particle sizes and electrolyte valence.

In this way the following formulas are only valid preventing the validity of the inequality Eq. 2.5 or Eqs. 2.6 and 2.7.

At the distance of closest approach, \(r = a\), then

\[
\psi(a) = \frac{Q}{4\pi\epsilon\epsilon_0a} \frac{1}{1 + \kappa a} = \frac{Q}{4\pi\epsilon\epsilon_0a} - \frac{Q}{4\pi\epsilon\epsilon_0} \frac{\kappa}{1 + \kappa a} \tag{2.8}
\]

The first term on the right-hand side of Eq. 2.8 is the potential \(\psi_i\) at the surface of the ion due solely to the charge on the ion itself. The second term is the portion \(\psi_a\) of the total potential that is due to the arrangement of the surrounding ions in the neighbourhood of the central ion and is called potential of the ionic atmosphere. The contribution of the cloud to the potential at the site of the central ion or particle can be written as

\[
\psi_a(r) = \frac{Q}{4\pi\epsilon\epsilon_0r} \left[e^{\kappa(a-r)} - 1 \right] = \frac{-Q}{4\pi\epsilon\epsilon_0x} \tag{2.9}
\]

This condition comes to approximate \(\sinh(ze_0\psi(r)/kT) \approx ze_0\psi(r)/kT\) in the Poisson–Boltzmann equation.
with x given by:

$$x = \frac{r(1 + \kappa a)}{1 + \kappa a - \epsilon^{(a-x)}}$$ \hspace{1cm} (2.10)

Because of the spherical symmetry we have transformed the ionic atmosphere into a thin spherical shell with a charge $-Q$ placed at a distance x from the site of the
2.2 Calculation of the Electrical Mean Squares Fluctuations

For calculating the capacitance we need to compute the difference of potential of the ionic atmosphere between the surface of the particle or ion, \(x(a) \) and \(x(r) \), namely:

\[
\psi_a(a) - \psi_a(r) = \frac{-Q}{4\pi \varepsilon \varepsilon_0 r} \left[\frac{-1 + \kappa(r - a) + e^{\kappa(a-r)}}{1 + \kappa a} \right]
\]
(2.11)

The corresponding capacitance will be

\[
C(r) = \frac{-Q}{\psi_a(a) - \psi_a(r)} = \frac{4\pi \varepsilon \varepsilon_0 r(1 + \kappa a)}{-1 + \kappa(r - a) + e^{\kappa(a-r)}}
\]
(2.12)

2.2 Calculation of the Electrical Mean Squares Fluctuations

In order to calculate the voltage thermal fluctuations, \(\langle (\psi_a(r) - \psi_a(a))^2 \rangle \), and its spectral distribution across two points of the solution, \([(\psi_a(r) - \psi_a(a))^2]_\omega \), we resemble the solution path between the two points as an \(R(r)C(r) \) circuit in parallel (\(R(r) \) is the solution electrical resistance at the distance \(r \) from the site of the central ion and \(C(r) \) is the corresponding capacitance). The spectral density of the mean square of the fluctuational potential is: (see [16])

\[
[(\psi_a(r) - \psi_a(a))^2]_\omega = \frac{2R(r)kT}{1 + [\omega R(r)C(r)]^2}
\]
(2.13)

and the corresponding mean square of the fluctuating potential will be

\[
\langle (\psi_a(r) - \psi_a(a))^2 \rangle = \frac{1}{\pi} \int_0^\infty [(\psi_a(r) - \psi_a(a))^2]_\omega d\omega = \frac{kT}{C(r)}
\]
(2.14)
For $\omega \ll \frac{2\pi}{\tau}$, with $\tau = RC$, the spectral density is practically independent of ω; thus, for relatively low frequencies, we have a ‘white’ spectrum and Eq. 2.13 transforms:

\[
[(\psi_a(r) - \psi_a(a))^2]_\omega = 2R(r)kT
\] \hspace{1cm} (2.15)

Consequently:

\[
< (\psi_a(r) - \psi_a(a))^2 > = \frac{1}{\pi} \int_{w}^{w+\Delta \omega} 2R(r)kTd\omega = \frac{2}{\pi}R(r)kT\Delta \omega = 4R(r)kT\Delta f
\] \hspace{1cm} (2.16)

Where $\omega = 2\pi f$, with f the frequency and the region corresponds to the ‘white’ noise. Equation 2.16 constitutes the so-called Nyquist theorem, [15].

Applying Eqs. 2.12 and 2.14 we get for the mean square of the fluctuating potential difference:

\[
< (\psi_a(r) - \psi_a(a))^2 > = \frac{kT[-1 + \kappa (r - a) + e^{\kappa(a-r)}]}{4\pi \varepsilon \varepsilon_0 r (1 + \kappa a)}
\] \hspace{1cm} (2.17)

The mean square of the field averaged over the distance r, $< (E_r(r))^2 > = < (\psi_a(r) - \psi_a(a))^2 > r^{-2}$, (see [20] Eqs. (22) and (23)), namely:

\[
< (E_r(r))^2 > = < (\nabla_r \psi(r))^2 > = \frac{kT[-1 + \kappa (r - a) + e^{\kappa(a-r)}]}{4\pi \varepsilon \varepsilon_0 r^3 (1 + \kappa a)}
\] \hspace{1cm} (2.18)

For long distances Eqs. 2.17 and 2.18 transform:

\[
< (\psi_a(r) - \psi_a(a))^2 > = \frac{kT\kappa}{4\pi \varepsilon \varepsilon_0 (1 + \kappa a)}
\] \hspace{1cm} (2.19)

\[
< (E_r(r))^2 > = < (\nabla_r \psi(r))^2 > = \frac{kT\kappa}{4\pi \varepsilon \varepsilon_0 r^2 (1 + \kappa a)}
\] \hspace{1cm} (2.20)

For a solution of negligible ions size, we can consider $a = 0$ in the former Eqs. 2.17 and 2.18 giving:

\[
< (\psi_a(r) - \psi_a(0))^2 > = \frac{kT(-1 + \kappa r + e^{-\kappa r})}{4\pi \varepsilon \varepsilon_0 r}
\] \hspace{1cm} (2.21)

\[
< (E_r(r))^2 > = < (\nabla_r \psi(r))^2 > = \frac{kT(-1 + \kappa r + e^{-\kappa r})}{4\pi \varepsilon \varepsilon_0 r^3}
\] \hspace{1cm} (2.22)

Equations 2.21 and 2.22 differ by a factor of 2 from those already given by Oosawa [11].
2.2 Calculation of the Electrical Mean Squares Fluctuations

In case we have small potentials and a flat double layer Eq. 2.1 transforms into, see [20]:

$$\psi(r) = \psi_0 e^{-\kappa x}$$ \hspace{1cm} (2.23)

It is well known from electrostatics:

$$\sigma = -\epsilon \epsilon_0 \frac{\partial \psi(r)}{\partial x} \big|_{x=0}$$ \hspace{1cm} (2.24)

From Eqs. 2.23 and 2.24 we get

$$\psi(x) = \frac{Q}{\epsilon \epsilon_0 \kappa} e^{-\kappa x}$$ \hspace{1cm} (2.25)

The potential profile due solely to the charge on the surface is

$$\psi_s(x) = -\frac{Q}{\epsilon \epsilon_0} x$$ \hspace{1cm} (2.26)

Then the potential of the ionic atmosphere will be

$$\psi_a(x) = \psi(x) - \psi_s(x) = \frac{Q}{\epsilon \epsilon_0 \kappa} \left[\frac{e^{-\kappa x}}{\kappa} + x \right]$$ \hspace{1cm} (2.27)

Correspondingly the capacitance formed by the surface and ionic atmosphere will be

$$C(x) = \frac{-Q}{\psi_a(0) - \psi_a(x)} = \frac{\epsilon \epsilon_0 S}{x \left[1 - \frac{1}{\kappa x} (1 - e^{-\kappa x}) \right]}$$ \hspace{1cm} (2.28)

Then from Eq. 2.14 we get for the mean square of the fluctuating potential:

$$< (\psi_a(x) - \psi_0 a)^2 > = \frac{kT}{\epsilon \epsilon_0 S} x \left[1 - \frac{1}{\kappa x} (1 - e^{-\kappa x}) \right]$$ \hspace{1cm} (2.29)

And for the mean square of the field averaged over the distance x, we have

$$< (E_x(x))^2 > = < (\nabla_x \psi(x))^2 > = \frac{kT}{\epsilon \epsilon_0 S} \frac{1}{x} \left[1 - \frac{1}{\kappa x} (1 - e^{-\kappa x}) \right]$$ \hspace{1cm} (2.30)

Equations 2.29 and 2.30 coincide with those given by Oosawa [11].

For long distances we can consider the value of the bracket in Eqs. 2.29 and 2.30 equal to the unit.
2.3 Calculation of the Spectral Density Fluctuations

In order to calculate the spectral density of the mean square of the fluctuational potential difference using Eq. 2.13 we need to know the electrical resistance, \(R(r) \), between the surface of the particle or ion and a point \(r \) inside the solution. Its relation with the capacitance of the equivalent electrostatic problem is (see, for instance, Reitz and Milford [17]):

\[
R(r) = \frac{\varepsilon \varepsilon_0 \rho}{C(r)}
\] (2.31)

with \(\rho \) being the solution electrical resistivity.

In Fig. 2.6 is represented \(C(d) \) and \(R(d) \), \((d = r - a) \), from Eqs. 2.12 and 2.31 for a 100 mM KCl solution.

Correspondingly the relaxation time, \(\tau \), of the electrical fluctuations will be given by:

\[
\tau = \varepsilon \varepsilon_0 \rho
\] (2.32)

Fig. 2.6 Representation of Eqs. 2.12 and 2.33 for the resistance and capacitance of the solution as a function of the distance from the particle surface. \(\rho_{KCl} = 0.8 \Omega \text{m} \) was calculated from Eq. A2.7 (see parameters on the figure)
2.3 Calculation of the Spectral Density Fluctuations

In Fig. 2.7 is represented τ as a function of concentration for a KCl solution, using Eq. A2.7 for ρ. We can observe a diminution of the relaxation time with concentration because of the corresponding diminution of the electrical resistivity.

From Eqs. 2.12 and 2.31 we get

$$R(r) = \rho \frac{-1 + \kappa(r-a) + e^{x(a-r)}}{4\pi r(1 + \kappa a)}$$ \hspace{1cm} (2.33)

In case we have a flat double layer from (2.28) and (2.31) we have

$$R(x) = \frac{\rho}{S} x \left[1 - \frac{1}{\kappa x} (1 - e^{-x}) \right]$$ \hspace{1cm} (2.34)

In case of lack of experimental data on ρ we can calculate it from Eq. A2.1 together with Eqs. A2.7 and A2.8, see Appendix.

From Eqs. 2.13, 2.31 and 2.33; we get for the spectral density of the mean square of the fluctuational potential:
\[
[(\psi_a(r) - \psi_a(a))^2]_\omega = \frac{2kT \rho}{1 + (4\pi \varepsilon \varepsilon_0 \omega \rho)^2} \frac{-1 + \kappa (r - a) + e^{x(a-r)}}{r(1 + \kappa a)}
\]
(2.35)

Correspondingly the spectral density of the mean square of the fluctuational electric field will be given by:

\[
[(E_r(r))^2]_\omega = \frac{2kT \rho}{1 + (4\pi \varepsilon \varepsilon_0 \omega \rho)^2} \frac{-1 + \kappa (r - a) + e^{x(a-r)}}{r^3(1 + \kappa a)}
\]
(2.36)

In Fig. 2.8a is shown the spectral density of the mean square of the fluctuational potential versus the radial frequency of the fluctuations for a KCl solution for given values of concentrations. We can observe a substantial diminution and broaden of the spectrum with increasing concentration with the corresponding diminution of the relaxation time of the fluctuations.

In Fig. 2.8b is shown the spectral density of the mean square of the fluctuational potential as a function of the particle size, we can observe an effect of electrical stabilization, diminution of the amplitude of the fluctuations, with increasing particle size.

2.4 Calculation of the Mean Squares Temporal Averages

We can characterize the time correlation of a physical quantity, \(x(t)\), by the mean value of the product \(< x(0)x(t) >\) which is related to the spectral resolution, \((x^2)_\omega\), by:

\[
<x(0)x(t)> = \frac{1}{2\pi} \int_{-\infty}^{\infty} (x^2)_\omega e^{-i\omega t} d\omega
\]
(2.37)

In particular, \(< x(0)^2 >\) is the mean square of the fluctuating quantity:

\[
<x(0)^2> = \frac{1}{2\pi} \int_{-\infty}^{\infty} (x^2)_\omega d\omega
\]
(2.38)

In order to compare the fluctuating quantity with the corresponding to a physical event elapsed in a time \(\Delta t\) it is necessary to know the mean square of the fluctuating quantity averaged in this time interval \(\Delta t\), namely:

\[
\frac{1}{\Delta t} \int_0^{\Delta t} <x(0)x(t)> dt
\]
(2.39)

In our case \(x \equiv \psi_a(r) - \psi_a(a)\) and from Eq. 2.13 \(< x(0)^2 > = \frac{kT}{c(r)}\) and from Eqs. 2.13 and 2.31:
Fig. 2.8 (a) Spectral density of the mean square of the fluctuational potential as a function of the fluctuational frequency ω for a pure KCl solution (see parameters on the figure). (b) Ditto as a function of particle size.
\[
[(\psi_a(r) - \psi_a(a))^2]_\omega = \frac{kT}{C(r)} \frac{2}{\tau(\omega - \frac{i}{\tau})(\omega + \frac{i}{\tau})}
\]

(2.40)

Then from Eqs. 2.35 and 2.38 and adapting the notation to our case, \(x(0) x(t) =< (\psi_a(r) - \psi_a(a))^2 >\) (to condense notation), we have

\[
< (\psi_a(r) - \psi_a(a))^2 > = \frac{kT}{C(r)\pi \tau} \int_{-\infty}^{\infty} \frac{e^{-i\omega t} d\omega}{(\omega - \frac{i}{\tau})(\omega + \frac{i}{\tau})} = \frac{kT}{C(r)} e^{-\frac{t}{\tau}}
\]

(2.41)

Applying Eq. 2.37 to our case we have

\[
< (\psi_a(r) - \psi_a(a))^2 > = \frac{1}{\Delta t} \int_0^{\Delta t} <(\psi_a(r) - \psi_a(a))^2> dt = \frac{kT}{C(r)} \left[\frac{\tau}{\Delta t} \right] \left[1 - e^{-\frac{\Delta t}{\tau}} \right]
\]

(2.42)

Analogously for the field fluctuations:

\[
< (E_a(r))^2 > = \frac{kT}{\tau^2 C(r)} \left[\frac{\tau}{\Delta t} \right] \left[1 - e^{-\frac{\Delta t}{\tau}} \right]
\]

(2.43)

In Fig. 2.9a–d are shown voltage and field fluctuations as a function of the Debye–Hückel reciprocal length, \(\kappa^{-1}\), for given values of particle sizes at a distance \(d = 100 \text{ Å}\) from the particle surface. These figures have to be observed together with Fig. 2.3a and b which give \(\kappa^{-1}\) vs. \(c\) for mono and bivalent electrolytes.

Exam of Fig. 2.9 indicates that the fluctuations diminish as particle sizes increase, as a consequence large particles produce electrical stabilization in their neighbourhood.

Also can be observed that fluctuations are not quite sensitive to ionic concentrations for large particles.

Voltage fluctuations, for our range of \(\kappa^{-1}\), (this range covers most of the current biological and physical chemistry systems) run from tenth of an mV to about 20 mV, with the corresponding field fluctuations spanning a range of \(\mu \text{VÅ}^{-1} - \text{mVÅ}^{-1}\).

In Fig. 2.9e–h are also shown voltage and field fluctuations as a function of the distance \(d\) from the particle surface for different values of \(\kappa^{-1}\) and particle sizes. It can be observed the existence of substantial increase in voltage fluctuations with increasing \(d\), specially for small particles, and up to a limiting value given by Eq. 2.19. Also, for these small particles it can be observed a maximum in the field fluctuations at a distance of the order of \(\kappa^{-1}\). Also, here, the effect of electrical stabilization with increasing of particle size becomes apparent.

In Fig. 2.10a–d are plotted voltage and field fluctuations for the two extreme cases: (1) an ionic solution of punctual or small ions (Fig. 2.10a, b) and (2) two plates of area \(S = 1 \text{ cm}^2\) and separation \(x\) immersed in an ionic solution of punctual ions (Fig. 2.10c and d). In case (1) voltage fluctuations remain between 1 and 20 mV converging to the limiting value given by Eq. 2.19 for long distances; the corresponding field fluctuations stay in the range of a few mVÅ\(^{-1}\) decreasing with distance.
Fig. 2.9 Voltage and field fluctuations as a function of κ^{-1} and the distance d from the particle surface
In case (2) voltage fluctuations increase with distance and are in the two digits nV range. Corresponding electric field fluctuations decrease with distance are in the tenth of nVÅ⁻¹ range.

We have developed a simple method to estimate the electrical fluctuations in colloids and ionic solutions. The steps to perform in order to determine these fluctuations can be summarized as follows:

1. Identification of the molecular–ionic capacitor of the system. The capacitance is given by:

 \[C(r) = \left| \frac{Q}{\psi_a(r) - \psi_a(a)} \right|, \tag{i} \]

 with \(Q \) the charge on the particle or molecule and \(\psi_a(r) \) the potential of the ionic atmosphere, \(a \) the distance from the centre to the surface of the particle or molecule and \(r \) the distance from the centre to a point inside the surrounding solution.

2. Estimation of the resistance \(R(r) \) or the electrical resistivity \(\rho \) of the path associated with the capacitance (electrical path), then the relaxation time, \(\tau \), is
3. The voltage and field mean square fluctuations are given by:

\[
< (\psi_a(r) - \psi_a(a))^2 > = \frac{kT}{C(r)},
\]

\[
< (E_r(r))^2 > = \frac{< (\psi_a(r) - \psi_a(a))^2 >}{r^2},
\]

4. The spectral density of the mean square of the fluctuational potential and field is given by:

\[
[(\psi_a(r) - \psi_a(a))^2]_{\omega} = \frac{2R(r)kT}{1 + [\omega \tau]^2},
\]

\[
[(E_r(r))^2]_{\omega} = \frac{[(\psi_a(r) - \psi_a(a))^2]_{\omega}}{r^2},
\]

5. The mean square of the fluctuational potential and field averaged in a time, \(\Delta t\), is given by:

\[
< (\psi_a(r) - \psi_a(a))^2 > = \frac{kT}{C(r)} \left(\frac{\tau}{\Delta t} \right) \left[1 - e^{-\Delta t/\tau} \right],
\]

\[
< (E_r(r))^2 > = \frac{< (\psi_a(r) - \psi_a(a))^2 >}{r^2},
\]

Voltage fluctuations at a molecular scale cannot be measured due both to unavailability of microscopic probes and to response limitation of measuring electronics. Measurement of these fluctuating voltages is also inherently elusive due to the thermal noise of electronic apparatuses. Molecular systems, on the other hand, are sufficiently small and fast as to both sense and respond to local fluctuating electrical fields (Lauger [7], Hille [6]) or for an efficient processing of information in the form of fast conformational changes [3]. In order to explain any possible mechanism at molecular level, which involves an electric process, this fluctuations have to be considered.

The above described fluctuations are one of the factors that cause the dielectric increment \(\Delta \epsilon\) of polyelectrolyte solutions; Oosawa [12] related the field fluctuations to \(\Delta \epsilon\) having obtained a good agreement with the experimental data of Takashima [19].

Fluctuations with very long relaxation times appear in or around particles. The lowest relaxation time of fluctuations in counterion density around a long rod-like polyelectrolyte was found to be in the range of \(10^{-3} – 10^{-4}\) s (Oosawa [13], Takashima [19], Mandel [9]).
We suggest the application of the present formalism to the determination of the field fluctuations in long rod-like polyelectrolyte solutions in order to estimate the dielectric increment, $\Delta \varepsilon$, and compare with the existent experimental data on this kind of systems.

Appendix: Theoretical Calculation of the Electrical Resistivity

When we have highly charged particles or polyelectrolytes immersed in a symmetrical electrolyte solution, another path of electric conduction can be open through this particles or polyelectrolytes and the electrical conductivity $\sigma = \rho^{-1}$ of the solution can be written as:

$$\rho^{-1} = \rho_i^{-1} + \rho_p^{-1} \tag{A2.1}$$

where ρ_i and ρ_p are the contributions to the total electrical resistivity of the ions and particles, respectively. The relation between the electrical resistivity, ρ_i, and the equivalent conductance $\tilde{\Lambda}$ is given by:

$$\rho_i = \frac{N_A}{n z \tilde{\Lambda}} \tag{A2.2}$$

According to Debye and Hückel [2] and Onsager [10] interionic attractions and repulsions lead to two effects both of which result in the lowering of the equivalent conductance with increasing ion concentrations, correspondingly it can be decomposed into three terms (see [1] for a good treatise on this subject):

$$\tilde{\Lambda} = \tilde{\Lambda}_0 - \tilde{\Lambda}_e - \tilde{\Lambda}_r \tag{A2.3}$$

where $\tilde{\Lambda}_0$ is the equivalent conductance at infinite dilution, and is given by:

$$\tilde{\Lambda}_0 = \frac{z e_0^2 N_A}{kT}(D_0^+ + D_0^-) \tag{A2.4}$$

where D_0^\pm are the diffusion constants.

$\tilde{\Lambda}_e$ is the contribution of the electrophoretic effect and tends to diminish $\tilde{\Lambda}_0$, is given by:

$$\tilde{\Lambda}_e = \frac{2 z e_0^2 \kappa N_A}{6 \pi \eta (1 + \kappa a_i)} \tag{A2.5}$$

where η is the viscosity of the solution and a_i is the mean ions radius.
\(\Lambda_t \) is called the *time of relaxation effect* and is the other mechanism tending to decrease the equivalent conductance, namely:

\[
\Lambda_t = \frac{(e_0 z)^2 \kappa}{24 \pi \varepsilon_0 kT (1 + \sqrt{2})} \Lambda_0
\]

(A2.6)

From Eqs. A2.2–A2.6, we get for the ions electrical resistivity:

\[
\rho_i = \frac{1}{n(z\varepsilon_0)^2 \left[1 - \frac{(z\varepsilon_0)^2 \kappa}{24 \pi \varepsilon_0 kT (1 + \sqrt{2})} \left(\frac{D_{i+} + D_{i-}}{kT} \right) - \frac{\kappa}{3 \pi \eta (1 + \kappa a_i)} \right]}
\]

(A2.7)

In Fig. 2.11 is represented Eq. A2.7 for a KCl solution as a function of concentration.

The electrical resistivity corresponding to the particles, \(\rho_p \), is given by:

\[
\rho_p = \frac{6 \pi \eta a_p (1 + \kappa a_p)}{n_p Q^2 (1 + \frac{\kappa a_p}{a_p}) f(\kappa a_p)}
\]

(A2.8)

where \(n_p \) is the number of particles per m\(^3\), \(Q \) is the net charge on the particle, \(a_p \) the radius of the particle and \(f(\kappa a_p) \) is called Henry’s function [4]; it varies between...
1.0 and 1.5 as κa_p goes from zero to infinity and K_s is the surface conductance of the particle.

In deriving Eq. A2.8 we have used the relation between the current density J (A/m2) and the external applied field E, namely:

$$J = n_p Q v = \frac{1}{\rho_p} E$$ \hspace{1cm} (A2.9)

where v is the velocity of the particles and is given by Henry’s equation, Henry [4]:

$$v = \frac{\xi 4\pi \varepsilon \varepsilon_0}{6\pi \eta} f(\kappa a_p) E$$ \hspace{1cm} (A2.10)

where the ξ potential is given by:

$$\xi = \frac{Q}{4\pi \varepsilon \varepsilon_0 a_p \left(1 + \kappa a_p\right)}$$ \hspace{1cm} (A2.11)

Henry [5] introduced a correction for the surface conductance, K_s, considering that the mobility of the particle would be reduced on account of the distortion of the spherical symmetry of the electrical double layer, relaxation effect. Also, the applied field would be modified in the vicinity of the particle by the electrical conductivity of the double layer.

$$\xi_{corr} = \xi \left(1 + \frac{K_s \rho_i}{a_p}\right)$$ \hspace{1cm} (A2.12)

The surface conductance of the particle can be evaluated using equations due to Street [18]. The relaxation effect may be neglected when (a) the values for ξ potential are far below 25 mV and (b) values for κa_p are small (less than 1) or when $\kappa a_p \gg 1$ (Overbeek [14]).

References

Electrical Fluctuations in Polyelectrolytes
Fornés, J.A.
2017, VIII, 91 p. 32 illus., 30 illus. in color., Softcover
ISBN: 978-3-319-33839-2