
Chapter 2
Computational Models of Achievement,
Affiliation and Power Motivation

Chapter 1 examined literature from motivation psychology and reviewed the the-
ories that may contribute to different game-play characteristics in humans. It
specifically focused on three theories of motivation that can be modelled using the
concept of incentive: achievement, affiliation and power motivation. This chapter
introduces computational models of motivation to embed these human-inspired
motives in artificial agents. A flexible mathematical model is introduced that per-
mits these three motives to be expressed in terms of approach and avoidance
components, which can be adjusted to create different motivation variants. Two
approaches to using these models for goal selection are introduced.

2.1 Towards Computational Motivation

In the previous chapter we identified a mapping between three psychological
motivation theories for achievement, affiliation and power and the player types,
motivation components and user groups that have been identified among partici-
pants in virtual worlds. We described how theories of implicit motivation proposed
by motivation psychologists can explain differences in behaviour between indi-
viduals seemingly in the same situation. This suggests a methodology for devel-
oping more diverse and believable computer-controlled game characters by
embedding them with computational models of those motivations.

This chapter presents computational models of motivation for achievement,
affiliation and power motivation. The models are designed such that they can be
used in isolation or together, embedded in an artificial ‘motive profile’. This chapter
draws on the ideas of incentive, probability of success and approach-avoidance
motivation seen in Chap. 1 as the basis for developing computational models for
achievement, affiliation and power motivation.

Our basic approach uses sigmoid curves to model approach and avoidance of a
goal as a function of either the probability of successfully achieving the goal, or the
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incentive to achieve a goal. A goal here is an intermediate construct that specifies
how an individual strategically goes about addressing the underlying approach and
avoidance motives [7]. In artificial agent research, goals can describe states or
changes to achieve, states to maintain or preserve, information to retrieve and
behaviours to execute or cease, among other things [3]. We do not, at this point fix
on a specific definition for a goal, but note that it could be any of these things in an
artificial agent. We revisit the idea of a goal later in the book when we embed
computational models of motivation in specific agent architectures.

Section 2.2 introduces a set of mathematical tools we can use to model
approach-avoidance motivation. These are then utilised to produce three
incentive-based computational models of achievement, affiliation and power
motivation. These motives are considered individually and in combination in a
computational motive profile in Sect. 2.3. Models of different complexity and
fidelity are considered. Finally, Sect. 2.4 presents two approaches to goal selection
using motivation.

2.2 Modelling Incentive-Based Motives Using
Approach-Avoidance Theory

The approach-avoidance theory of motivation is characterised by the idea that both
the attractiveness and repulsiveness of a goal or an incentive increase the closer one
gets to it. Closeness here may refer to closeness in time, space or psychological
distance. Different representations of this theory have been proposed. Miller [19],
for example, focused on the gradient of approach and avoidance. He hypothesised
that the strength of avoidance motivation may increase more rapidly than the
strength of approach motivation as the goal or incentive is neared. A typical linear
model of this phenomenon has the general form:

y ¼ mxþ b; ð2:1Þ

where x is the distance to incentive, y is the strength of the resultant tendency of
motivation for the incentive, m is a negative number controlling the gradient of
approach or avoidance and b is a positive number controlling the maximum
strength of the motivation in question. An example is shown in Fig. 2.1.

An alternative model proposed by Maher [12] focuses on the strength of
motivation in approach-avoidance conflict, rather than on the gradients of approach
and avoidance. When an individual is far from a goal or incentive, the motivation to
avoid it is greater than the motivation to approach it. However, when the individual
approaches the incentive, the strength of motivation to approach the incentive can
become very strong very quickly. The model has hyperbolic characteristics of the
following form:
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y ¼ a
bx

þ c: ð2:2Þ

x is again the distance to incentive and y is the strength of the resultant tendency of
motivation for the incentive. The parameters a and b control the gradient of
approach or avoidance and c controls the minimum strength of the motivation in
question. An example is shown in Fig. 2.2.

Mathematically, we can see that the two models are different, but do retain some
similarities. In particular, the strength of motivational tendency for both approach
and avoidance increases as distance to incentive decreases.

The models above consider motivational tendency as a function of distance to
incentive. Another key concept of motivation is the U- or inverted-U-shaped
relationship between motivational tendency and strength of incentive. This rela-
tionship is captured, for example, by the quadratic model of the resultant tendency
curves for motivation in Eq. 1.5. A more general form for this model is (Fig. 2.3):

y ¼ av2 þ bvþ c ð2:3Þ

The variable v is the value of the incentive. The parameters a and b together
control the gradient of approach and avoidance of incentive, the position of the
maximum (or minimum) motivational tendency along the horizontal axis, and the
strength of the maximum (or minimum) motivational tendency. c controls the
intersection point of the resultant motivational tendency curve with the vertical axis.

Fig. 2.1 Modelling approach-avoidance theory with a focus on gradient [19] using Eq. 2.1 with
m = –0.5, b = 1 for approach motivation and m = –4, b = 2 for avoidance motivation
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Fig. 2.2 Modelling approach-avoidance theory with a focus on strength [12] using Eq. 2.2 with
a = 0.2, b = 1, c = 0 for approach motivation and a = 0.2, b = 5, c = 0.5 for avoidance
motivation

Fig. 2.3 A quadratic model of motivation as a function of incentive using Eq. 2.3 with a = –4,
b = 4, c = 0. We assume incentive is inversely proportional to probability of success
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A number of other mathematical functions have been used to model phenomena
with similar inverted-U-shaped characteristics, such as arousal, hedonic response
and creativity [16]. One example is a Gaussian function of the form:

y ¼ ae�
ðv�bÞ2

2c ð2:4Þ

This function has parameters a, b and c that give us control of the height of the
inverted U, the position of the maximum and the gradient of increase and decrease
of the function. The variable v here can represent factors such as the amount of
neural activity, psychophysical intensity, ecological stimuli or collative effects such
as novelty or incentive, depending on the phenomenon being modelled [9]. Using
this model, the parameter b effectively controls the gradient of both approach and
avoidance, so we cannot manipulate these independently (Fig. 2.4).

When modelling hedonic response as the sum of positive and negative feedback
for approach and avoidance, a Gaussian cumulative distribution can be used to
model the positive feedback as the area under the Gaussian probability distribution.
However, other functions are also common as cumulative distribution functions,
and can give us greater control of the shape of the motivation curve. One example is
a sigmoid function:

y ¼ a
1þ e�c v�bð Þ ð2:5Þ

Fig. 2.4 Gaussian model of motivation as a function of incentive using Eq. 2.4 with a = 1, b =
0.5, c = 0.01
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a again controls the maximum of the function and c the rate of increase. However,
b now controls the position of the turning point of the curve along the horizontal
axis. v is again the amount of neural activity, psychophysical intensity, ecological
stimuli or collative effect being modelled (Fig. 2.5).

The inverted-U-shaped relationship between probability of success and resultant
tendency for motivation can be achieved using a sigmoid-based representation with
one sigmoid function for positive feedback (approach) and another for negative
feedback (avoidance) [18]. This effectively gives us separate parameters to control
the strength, rate of increase and position of the turning points for approach and
avoidance motivation. A sigmoid representation has previously been used in this
way to model curiosity and interest [22] as approach to novelty and avoidance of
very high novelty. We use these ideas to model achievement, affiliation and power
motivation in the following sections.

2.2.1 Modelling Achievement Motivation

Atkinson’s risk-taking model (RTM; see Chap. 1) has been both influential and
successful in aiding the understanding of achievement motivation in humans. The
general trends described by the RTM have been observed in experimental settings
in humans [2, 13]. However, the point of maximum approach tends to fall below the

Fig. 2.5 A sigmoid model of motivation as the sum of approach and avoidance curves using
Eq. 2.5 with a = 1, b = 0.25, c = 20 for approach motivation and a = –1, b = 0.75, c = 20 for
avoidance motivation
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critical level of Ps ¼ 0:5 predicted by the RTM. Furthermore, failure-motivated
individuals do not select extremely difficult goals to the extent predicted by the
RTM. The known limitations of the RTM suggest that a more sensitive model is
required to capture the subtleties of achievement motivation in artificial agents.

The ideas of incentive, probability of success and approach-avoidance motiva-
tion proposed by Atkinson can be captured in a sigmoid-based model. Thus, such a
model does not redefine the existing psychological model of motivation, but rather
interprets it computationally in a flexible manner that can potentially be extended to
other approach-avoidance motivations.

Equation 2.6 represents achievement motivation as the difference between two
sigmoid functions for approach and avoidance of a goal G. Using a sigmoid rep-
resentation, approach motivation is stronger for goals with a higher probability of
success, until a certain threshold probability is reached and approach motivation
plateaus.

Conversely, avoidance motivation is zero for goals with a very low probability
of success, and negative for goals with a high probability of success. This means
that failure at a very easy goal is punished the most. The resultant tendency to
achieve a goal G is the sum of the approach and avoidance sigmoid curves in
composition with a function PsðGÞ for computing the subjective probability of
successfully achieving goal G, as shown ⃘ in Eq. 2.6:

T res
ach PsðGÞð Þ ¼ T res

ach � Ps� �ðGÞ ¼ Sach
1þ e�qþ

achðPsðGÞ�M þ
achÞ

� Sach
1þ e�q�achðPsðGÞ�M�

achÞ
:

ð2:6Þ

Equation 2.6 is visualized in Fig. 2.6. PsðGÞ has a value range between zero
(guaranteed failure) and one (guaranteed success). The manner in which probability
of success is estimated will influence the resulting achievement motivation value
computed. Various methods have been proposed by psychologists. These include
the mastery- and performance-oriented approaches summarised in Table 2.1. Each
of these approaches is also possible for artificial agents that can interact with their
environment or other agents. Self-based estimates and social comparison standards
are perhaps the most straightforward, as they can be understood as the number of
successful attempts divided by the total number of attempts.

Measuring probability of success in absolute standards is more difficult as it
requires an understanding of the domain in question.

The model has five parameters: M þ
ach, M�

ach, qþ
ach, q�ach and Sach, which are

summarized in Table 2.2. M þ
ach is the turning point of the sigmoid for approach

motivation and M�
ach is the turning point of the sigmoid for avoidance. When the

approach turning point is to the left of the avoidance turning point (that is,
M þ

ach\M�
ach), then the resultant tendency represents a success-motivated individual,

as shown in Fig. 2.6a. Note the characteristic inverted U-shape of the curve for
resultant tendency, similar to that seen in Atkinson’s [1] model in Fig. 1.4a.
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Success-motivated individuals with a lower value of M þ
ach, are more likely to

attempt goals with a lower probability of success. For these individuals, the lower
the value ofM�

ach, the smaller the range of success probabilities they will consider to
be highly motivating. This means that their behaviour will be more focused on
goals within a narrow range of success probabilities.

Fig. 2.6 Sigmoid representations of a motivation to approach success (Sach ¼ 1, M þ
ach ¼ 0:25,

M�
ach ¼ 0:75 and qþ

ach ¼ q�ach ¼ 20) and b motivation to avoid failure (Sach ¼ 1, M þ
ach ¼ 0:75,

M�
ach ¼ 0:25 and qþ

ach ¼ q�ach ¼ 20). Images from [18]
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M þ
ach [M�

ach can be used to model Atkinson’s [1] original concept of a
failure-motivated individual, as in Fig. 2.6b. Note the characteristic U shape of the
curve for resultant tendency, similar to that seen shown in Atkinson’s [1] model in
Fig. 1.4b. In a failure-motivated individual the magnitude of negative feedback
(punishment) for failing increases more quickly than in success-motivated indi-
viduals. This has a tendency to focus behaviour on very difficult goals with a low
probability of success. The positive feedback for success increases slowly, pro-
ducing a tendency to focus on very easy goals with a high probability of success.

Atkinson and Litwin [2] later identified subtypes of achievement motivation
based on the combination of tendency to approach success and tendency to avoid
failure. Individuals’ tendency to approach success or avoid failure was gauged
using the projective test of need achievement and Mandler-Sarason tests.
Individuals were then broken into four groups as follows:

• H-L: high motivation to approach success and low motivation to avoid
failure,

• H-H: high motivation both to approach success and to avoid failure,

• L-L: low motivation both to approach success and to avoid failure

• L-H: low motivation to approach success and high motivation to avoid
failure.

In this study, Atkinson and Litwin [2] found that failure-motivated individuals
do not select very easy or very difficult tasks to the extent predicted by their original

Table 2.1 Ways in which individuals may estimate probability of success at a goal

Mastery-oriented estimates Performance-oriented estimates

Self-based estimates from individual
experience: how well an individual has
performed on previous attempts at the goal

Norm-based estimates or social comparison
standards: how many other people can solve
the goal (see Chap. 9)

Task-based estimates or absolute standards:
for example, distance from a target in a
shooting or throwing game (see Chap. 4)

Table 2.2 Parameters of the
achievement motivation
model in Eq. 2.6 and their
possible values

Parameter Description Value
range

PsðGÞ Probability of success [0, 1]

M þ
ach Turning point of success

approach
(–∞, ∞)

M�
ach Turning point of failure

avoidance
(–∞, ∞)

qþ
ach Gradient of success approach [0, ∞)

q�ach Gradient of failure avoidance [0, ∞)

Sach Motivation strength [0, ∞)
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RTM. Rather, they simply have slightly lower tendency for tasks of intermediate
difficulty. We model and study these subtypes with this fact in mind in Chap. 4.

Using a sigmoid-based model gives us additional control of the shape of the
resultant tendency curve through two parameters controlling the gradients of
approach and avoidance. Specifically, qþ

ach [ 0 is the gradient of approach to success
and q�ach [ 0 is the gradient of avoidance of failure. Some experimental evidence with
biological motives for hunger satiation and pain avoidance [5] suggests the gradient
of approach is often less than the gradient of avoidance. More recent work [8]
connects approach-avoidance motivation more broadly to concepts of appetition,
reward and incentive (approach) as well as aversion, punishment and threat (avoid-
ance). In the case of achievement motivation, gradient of approach less than gradient
of avoidance would imply qþ

ach\q�ach. Two examples of such scenarios are shown in
Fig. 2.7. This figure demonstrates how we can tune the shape of the motivation curve
and the impact of changes to qþ

ach and q�ach on the shape of the motivation curve.
Finally, Sach determines the strength of achievement motivation. When multiple

approach-avoidance motives are modelled using a sigmoid-based approach, the
S parameter permits them to compete or cooperate to control the behaviour of the
individual. As with the success and failure gradients, the range for Sach is somewhat
arbitrary, and depends on the ranges of the S values for other motivations, if any.
A general range of parameter values possible in this model is summarized in
Table 2.2. As the discussion above suggests, in practice, specific constraints on
these ranges create motive profiles that are more or less realistic in human moti-
vational terms. This will be demonstrated in Chap. 4.

Fig. 2.7 Two examples of motivation to approach success with varying qþ
ach and q�ach. Sach ¼ 1,

M þ
ach ¼ 0:25, M�

ach ¼ 0:75 and qþ
ach\ q�ach in both cases
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2.2.2 Modelling Affiliation Motivation

As we saw in Chap. 1, approach-avoidance motivation theory has been extended to
the social domain [7, 20]. Thus, in this section we model affiliation motivation as
the difference between two sigmoid functions for hope of affiliation and fear of
rejection. Our model also interprets affiliation motivation as a counterbalance to
power motivation. As discussed in Chap. 1, McClelland and Watson [14] presented
evidence indicating that the strength of satisfaction of the power motive depends
solely on incentive and is unaffected by the probability of success. Power-motivated
individuals select high-incentive goals, as achieving these goals gives them sig-
nificant control of the resources and reinforcers of others. To represent affiliation
motivation as opposing power motivation, we thus define hope and fear of affili-
ation with respect to incentive. In contrast to power motivation, hope of affiliation
(approach motivation) is high for low-incentive goals. These goals are likely to
cause the least conflict with others by competing for control of their resources or
reinforcers. As goal incentive increases, approach motivation decreases and pla-
teaus, as shown in Fig. 2.8. Negative feedback (avoidance motivation) is greatest
for high-incentive goals which may cause conflict with others. These two sigmoid
curves are summed and composed with goal incentive IsðGÞ as shown in Eq. 2.7 to
get the resultant tendency for affiliation, which peaks for low-incentive goals:

Fig. 2.8 Affiliation motivation as the sum of curves for hope of affiliation and fear of conflict as in
Eq. 2.7 (Saff ¼ 1, M þ

aff ¼ 0:3, M�
aff ¼ 0:1 and qþ

aff ¼ q�aff ¼ 20). Image from [18]
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T res
aff IsðGÞð Þ ¼ T res

aff � Is
� �ðGÞ ¼ Saff

1þ e�qþ
aff M þ

aff�IsðGÞð Þ �
Saff

1þ e�q�aff M�
aff�IsðGÞð Þ : ð2:7Þ

IsðGÞ represents the incentive to complete a given goal G. The process of estimating
incentive is imperfectly understood for humans, both in terms of the units in which
incentive might be measured and the way goals are mapped to incentive values. In
addition there is a great deal of conflicting experimental evidence in this area [10].
In this chapter, incentive is represented as a value between zero and one, with
incentive of one denoting the most valuable goals and incentive of zero denoting
the least valuable goals. Some possible suggestions for modelling incentive include:

• Incentive inversely proportional to probability of success: this is commonly
assumed for achievement goals. It should be noted that the gradient of this
mapping can vary from person to person;

• Incentive proportional to explicit value: certain goals directly satisfy moti-
vation, for example, consuming food satisfies hunger;

• Incentive proportional to socially determined value: certain goals have
indirect value depending on circumstances. For example, earning money is
valuable in a capitalist society.

The first and third approaches are the easiest to model in generic terms. For the
first approach, the agent can determine probability of success using one or more of
the approaches discussed in the previous section. For the third approach the agents
can communicate to agree on goal values. The second approach is the most difficult
as it implies some domain knowledge of which objects are inherently valuable. This
could be achieved through learning or exploration strategies such as trial-and-error.

This model also has five parameters, M þ
aff , M

�
aff , q

þ
aff , q

�
aff and Saff , which are

summarized in Table 2.3. M þ
aff is the turning point of the curve describing the

approach component of affiliation motivation and M�
aff is the turning point of the

curve describing the avoidance component. For affiliation motivation there is the
constraint that hope of affiliation should drop in response to an increase in fear of
rejection. This means that M þ

aff [M�
aff is required.

Table 2.3 Parameters of affiliation motivation (Eq. 2.7) and their possible values

Parameter Description Value range

IsðGÞ Incentive value for success at goal G [0, 1]

M þ
aff Turning point of approach (hope) M�

aff ;1
� �

M�
aff Turning point of avoidance (fear of conflict) �1;M þ

aff

� �

qþ
aff Gradient of approach (hope) [0, ∞)

q�aff Gradient of avoidance (fear of conflict) [0, ∞)

Saff Relative motivation strength [0, ∞)
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Once again, using a sigmoid-based model gives us additional control of the
shape of the resultant tendency curve through two parameters controlling the gra-
dients of approach and avoidance. qþ

aff is the gradient of hope for affiliation and q�aff
is the gradient of avoidance of conflict. Saff is a measure of the strength of the
affiliation motivation. Again, the theory of approach-avoidance motivation [5]
suggests the gradient of hope (approach) is often less than the gradient of fear
(avoidance), that is, qþ

aff\q�aff . Table 2.3 summarizes the parameters of this model
and the range of possible values they may take.

2.2.3 Modelling Power Motivation

Power motivation can also be modelled with respect to incentive as the difference
between two sigmoid curves for tendency to seek power and inhibition of power.
Tendency to seek power is lowest for low-incentive goals and highest for
high-incentive goals. Negative feedback for inhibition of power is also largest for
high-incentive goals. The resultant tendency for power motivation is the sum of the
power-seeking and inhibition sigmoid curves, composed with incentive for success
IsðGÞ as shown in Eq. 2.8. A visualization of this model is shown in Fig. 2.9.

Fig. 2.9 Power motivation as the sum of curves for approaching and avoiding power (Spow ¼ 1,
M þ

pow ¼ 0:6, M�
pow ¼ 0:9 and qþ

pow ¼ q�pow ¼ 20). Image from [18]
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T res
pow IsðGÞð Þ ¼ ðT res

pow � IsÞðGÞ ¼ Spow

1þ e�qþ
pow IsðGÞ�M þ

powð Þ �
Spow

1þ e�q�pow IsðGÞ�M�
powð Þ
ð2:8Þ

IsðGÞ represents incentive or the value of completing a given goal. Techniques for
estimating incentive were discussed in the Sect. 2.2.2. The model has five
parameters, M þ

pow, M
�
pow, q

þ
pow, q

�
pow and Spow. M þ

pow defines the turning point of the
approach component of power motivation and M�

pow defines the turning point of the
inhibition component of power motivation. For power motivation there is the
constraint that the inhibition tendency is triggered by an increase in tendency to
seek power. That is, M þ

pow\M�
pow. q

þ
pow is the gradient of tendency to seek power

and q�pow is the gradient of inhibition. Spow is a measure of the relative strength of
the power motivation compared to other motives. Table 2.4 summarizes the
parameters of this model and the range of possible values they may take.

2.3 Motive Profiles for Artificial Agents

When developing computational models of motivation there is a need to focus on
individual motives to aid understanding of these models. However, when exam-
ining the role of motivation in goal selection there is also a need to consider several
motives at once. Considering multiple motives permits the relative strengths and
dominance of different motives to be taken into account when generating beha-
viour. The interaction of several motives changes the way an individual responds in
a given situation. This section proposes three methods of differing complexity and
fidelity for combining the individual motivation models above into artificial ‘motive
profiles’. The first is a profile of three motives, the second models only the dom-
inant motive and the third represents motivation only in terms of the incentive value
with the highest motivation.

Table 2.4 Parameters of the power motivation (Eq. 2.8) and their possible values

Parameter Description Value range

Is Gð Þ Incentive value for success at goal G [0, 1]

M þ
pow Turning point of approach (power seeking) �1;M�

pow

� �

M�
pow Turning point of avoidance (inhibition) M þ

pow;1
� �

qþ
pow Gradient of approach (power seeking) [0, ∞)

q�pow Gradient of avoidance (inhibition) [0, ∞)

Spow Relative motivation strength [0, ∞)
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In the sections above, affiliation and power motivation are modelled with respect
to incentive, while achievement motivation is modelled with respect to probability
of success. In natural systems, it is possible that the definition of incentive may
change from motive to motive. However, for simplicity, in this book we assume
that there is correlation (if not equality) between these definitions and further adopt
Atkinson’s [1] assumption that there is an inverse linear relationship between
probability of success and incentive (Eq. 1.3 specifically). We can then build
models as functions of a single value: incentive. This means that, if we assume we
can create artificial agents that can obtain or calculate goal incentive IsðGÞ, then we
can create agents with an artificial motive profile. We do this in three ways. The first
method, in Sect. 2.3.1, models profiles of three motives explicitly. The second
method, in Sect. 2.3.2, models the dominant motive only. The third method, in
Sect. 2.3.3, models only the incentive that maximises the dominant motive.

2.3.1 Modelling Profiles of Achievement, Affiliation
and Power

We model profiles of achievement, affiliation and power motivation by combining
Eqs. 2.6–2.8 as a sum, as follows:

T res � Isð ÞðGÞ ¼ T res
ach IsðGÞð Þþ T res

aff IsðGÞð Þþ T res
pow IsðGÞð Þ

¼ Sach
1þ e�qþ

achðð1�IsðGÞÞ�M þ
achÞ

� Sach
1þ e�q�achðð1�IsðGÞÞ�M�

achÞ

þ Saff

1þ e�qþ
aff M þ

aff�IsðGÞð Þ �
Saff

1þ e�q�aff M�
aff�IsðGÞð Þ

þ Spow

1þ e�qþ
pow IsðGÞ�M þ

powð Þ �
Spow

1þ e�q�pow IsðGÞ�M�
powð Þ

ð2:9Þ

Summing the different component motives suggests that motives cooperate to
influence the behaviour of an agent. Other methods of combining motives (some-
times called arbitration functions [17]) have also been proposed. For example, the
combination of motives using a max(.) function models competition between
motives to influence the behaviour of the agent.

This model has parameters as shown in Table 2.5. Using Eq. 2.9, we can con-
struct artificial models of some of the named motive profiles discussed in Sects. 1.3.4
and 1.3.5. For example, a leadership motive profile [15] of high power and
achievement motivation, but low affiliation motivation might appear as shown in
Fig. 2.10a. An imperial motive profile of high power motivation, with low
achievement and affiliation motivation might appear as shown in Fig. 2.10b.

We use Eq. 2.9 to model motivation in the experiments in Chap. 5.
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2.3.2 Modelling the Dominant Motive Only

Alternatively, we can further simplify the calculation of motivation by considering
only the curve for the dominant motive. In this case we have:

T res � Isð ÞðGÞ ¼ T res
mot I

sðGÞð Þ ¼ Smot

1þ e�qþ
mot IsðGÞ�M þ

motð Þ �
Smot

1þ e�q�mot IsðGÞ�M�
motð Þ ;

ð2:10Þ

where mot is either ach, aff or pow and parameter values are chosen from Table 2.6.
We use this approach in Chap. 6.

2.3.3 Optimally Motivating Incentive

As we saw in Eqs. 2.9 and 2.10, motivational tendency for a goal is computed by
composing functions for approach-avoidance motivation and incentive for success
at a goal IsðGÞ. In situations where it is desirable to avoid making the full calcu-
lation, we can approximate a motive profile by introducing the concept of an
optimally motivating incentive (OMI) as follows.

First, we denote the incentive value that maximises T res(.) as X. We call X the
OMI of the agent. X can be thought of as approximating the motive profile as an

Table 2.5 Parameters of
motivation for an agent with a
profile of achievement,
affiliation and power
motivation as defined in
Eq. 2.9

Parameter Description

IsðGÞ Incentive value for success at goal G

M þ
ach Turning point of achievement approach

M�
ach Turning point of achievement avoidance

qþ
ach Gradient of achievement approach

q�ach Gradient of achievement avoidance

Sach Relative motivation strength for achievement

M þ
aff Turning point of affiliation approach

M�
aff Turning point of affiliation avoidance

qþ
aff Gradient of affiliation approach

q�aff Gradient of affiliation avoidance

Saff Relative motivation strength for affiliation

M þ
pow Turning point of power approach

M�
pow Turning point of power avoidance

qþ
pow Gradient of power approach

q�pow Gradient of power avoidance

Spow Relative motivation strength for power
motivation
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agent by indicating the incentive value that will result in the highest motivation. An
agent is qualitatively classified as power-motivated if its OMI is relatively ‘high’ in
the range of possible incentives. The OMI of such an agent is shown in Fig. 2.11.

Fig. 2.10 a Leadership motive profile: Sach ¼ 2, M þ
ach ¼ 0:35, M�

ach ¼ 0:65, Saff ¼ 1, M þ
aff ¼ 0:3,

M�
aff ¼ 0:1, Spow ¼ 2, M þ

pow ¼ 0:6, M�
pow ¼ 0:9 b Imperial motive profile: Sach ¼ 1, M þ

ach ¼ 0:4,
M�

ach ¼ 0:6, Saff ¼ 1, M þ
aff ¼ 0:3, M�

aff ¼ 0:1, Spow ¼ 2, M þ
pow ¼ 0:7, M�

pow ¼ 0:9. In both profiles
qþ
ach ¼ q�ach ¼ qþ

aff ¼ q�aff ¼ qþ
pow ¼ q�pow ¼ 20. Images from [18]
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Achievement- and affiliation-motivated agents have qualitatively ‘moderate’ and
‘low’ OMIs respectively.

Goal selection is done by computing the difference between the explicit incen-
tive for success at a goal IsðGÞ and the OMI X and constructing a ‘subjective
incentive’ value ÎsðGÞ that is highest for goals with IsðGÞ closest to X. The sub-
jective incentive value in this case is the resultant tendency for motivation. If the
maximum explicit incentive value is assumed to be one, then one such equation for
computing subjective incentive (resultant tendency) is:

Table 2.6 Parameters of motivation and their possible values when only the dominant motive is
modelled as defined in Eq. 2.10

Parameter Description Value range

IsðGÞ Incentive value for success at goal G [0, 1]

M þ
mot Turning point of approach �1;M�

mot

� �

M�
mot Turning point of avoidance M þ

mot;1
� �

qþ
mot Gradient of approach [0, ∞)

q�mot Gradient of avoidance [0, ∞)

Smot Motivation strength [0, ∞)

 = 0.8 

Fig. 2.11 Optimally motivating incentive X is the incentive value that maximises the motivation
function. Power-motivated profiles such as the one shown here have a relatively ‘high’ optimally
motivating incentive
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T res � Isð ÞðGÞ ¼ ÎsðGÞ ¼ 1� IsðGÞ � Xj j: ð2:11Þ

That is, subjective incentive is equal to the maximum possible incentive minus the
error between actual and optimal incentive. This means that a goal with an explicit
incentive of one only results in the highest subjective value if it is closest to the
agent’s OMI X. The agent is assumed to prefer goals with higher subjective
incentive. That is, we assume that the agent is ‘subjectively rational’. The impli-
cations of this assumption are, first, that an incentive IsðGÞ will be perceived
differently by agents with different OMIs. In addition, the highest explicit incentive
may not be the highest subjective incentive for all agents. This provides a foun-
dation for the emergence of behavioural diversity.

Goal selection using an OMI representation of motivation has an additional point
of flexibility over the motivation functions in Sects. 2.3.1 and 2.3.2, as there is no
longer a strict requirement for the range of incentive to be limited to [0, 1].
Incentive can potentially take on any range of values, including both positive (gain)
and negative (loss) values. Assuming that it is possible for agents to identify the
range and the maximum, Vmax, a more general equation for subjective incentive is:

T res � Isð ÞðGÞ ¼ ÎsðGÞ ¼ Vmax � IsðGÞ � Xj j: ð2:12Þ

This is useful in scenarios where incentive does not conform to Atkinson’s
assumptions about the relationship between incentive and probability of success
discussed in Chap. 1.

Yet another generalisation is possible if we weaken the definition of a goal. If the
goal is merely to obtain a certain incentive with value V, then it is no longer
necessary to explicitly distinguish the goal structure. This gives us the simplified
equation for subjective incentive as:

Îs ¼ Vmax � V � Xj j: ð2:13Þ

This equation models the influence of implicit motivation when judging explicit
incentives. The main weakness of the OMI approach is that it cannot be used to
model the subtleties of hybrid motive profiles. However, for pure profiles of
achievement, affiliation or power motivation, this technique can be a useful sim-
plification. The concept of OMI is used in the motivated learning agents in Part III
and the motivated evolutionary agents in Part IV.

2.4 Using Motive Profiles for Goal Selection

Goal-oriented behaviour has been widely addressed in the literature of both human
psychology and artificial agents. In human psychology, goal-setting theory is
considered a necessary part of motivation theories [4, 11]. Likewise, in artificial
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agents goals and motivations have also been closely related. Braubach et al. [3]
state that the goals of an agent represent the agent’s motivational stance, as it is
from goals that an agent determines the actions to perform. Dignum and Conte [6]
further state that truly autonomous, intelligent agents must be capable of creating
new goals as well as dropping goals as conditions change. They propose instru-
mental goal formation as a process of deriving concrete, achievable goals—such as
‘driving at the speed limit’—from high level, abstract goals—such as ‘being good’.
The notion of abstract goals in this case correlates somewhat with the psychological
definition of implicit motives, which stem from innate preferences for certain kinds
of incentives [10]. Concrete goals, in contrast, reflect explicit, self-attributed
motives. There is a wealth of literature on goal structures—including goal lifecycles
and type taxonomies [3]—and processes for solving goals—for machine learning,
planning and rule-based agents [21].

We saw in the previous section that motivation for a goal may be computed in a
number of different ways, making progressively weaker assumptions about the
nature of a goal. In Eqs. 2.9–2.12 a goal is represented specifically in the equation.
In Eq. 2.13 a goal is implied only by the existence of an incentive. Regardless of
how the goal is represented, however, the question remains as to what to do next.
That is, once motivated, how should an artificial agent choose between highly
motivating goals? We discuss two traditional alternatives here: a ‘winner-takes-all’
approach in Sect. 2.4.1 and a probabilistic approach in Sect. 2.4.2.

2.4.1 Winner-Takes-All

In the rule-based agents studied in Part II of this book (Algorithms 3.1 and 3.2),
motivation is computed using the full form of either Eq. 2.6 or Eq. 2.9. We denote
by Gt = {G1, G2, G3, …, GN} a set of goals that are valid at time t. We define the
maximally motivating goal Gmax

t for agent A as the element of Gt for which an agent
A computes the highest resultant motivational tendency.

The specific calculation of Gmax
t can be adapted to embed either a single moti-

vation or several motivations together in a motive profile. For example, Eq. 2.14
selects a goal using achievement motivation as defined in Eq. 2.6. Equation 2.15
selects a goal using a motive profile as defined in Eq. 2.9 or an OMI as in Eq. 2.11.
Chapters 3–5 examine how this motivated goal selection can be embedded in
architectures for game-playing agents.

Gmax
t ¼ argmax

G�Gt

ðT res
ach � PsÞðGÞ ð2:14Þ

Gmax
t ¼ argmax

G�Gt

ðT res � IsÞðGÞ ð2:15Þ
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2.4.2 Probabilistic Goal Selection

Another approach to goal selection is to select probabilistically according to the
distribution of motivation values across multiple goals. This has the advantage that
several goals with similar motivation values may be pursued. The probability
PðGt ¼ GgÞ with which a particular goal Gg is pursued at time t may be propor-
tional to the resultant tendency for motivation, or to the subjective incentive of the
goal, or computed using a function such as the Boltzman or ‘softmax’ distribution
to determine the probability of selecting a particular goal.

Probability proportional to the resultant tendency for motivation is computed by:

P Gt ¼ Ggð Þ ¼ T res � Isð Þ Ggð ÞP
G�Gt

T res � Isð Þ Gð Þ : ð2:16Þ

This approach is used in Chap. 6. Boltzman goal selection using a motive profile
such as Eq. 2.10 or Eq. 2.11 is computed by:

P Gt ¼ Ggð Þ ¼ softmax
G�Gt

T res � Isð ÞðGÞ ¼ e
Tres�Isð Þ Ggð Þ

s

P
G�Gt

e
Tres�Isð ÞðGÞ

s

: ð2:17Þ

0 < s < ∞ is a temperature value that determines the difference in probability of
goals with high motivation values from goals with low motivation values. s can be
varied to increase or decrease the probability of the agent executing a randomly
selected goal, or it can be kept constant.

2.5 Summary

This chapter has presented three incentive-based computational models of moti-
vation for achievement, affiliation and power motivation. The models use the
concept of approach and avoidance motivation and include curves for both
approach and avoidance of a particular motivation. Control parameters permit the
maximally motivating incentive to be modified in each model, as well as the rate of
increase and decrease of motivation as subjective probability of success or goal
incentive changes.

The models are designed such that they can be used in isolation or together,
embedded in an artificial ‘motive profile’. A motive profile can be further
approximated as an optimally motivating incentive.

We have provided a formal notation for selection of a maximally motivating
goal from a set of goals, or probabilistic goal selection. However, we have not yet
addressed the questions of how goals are created, or where success probabilities or
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incentive values come from. Chapter 3 will describe how computational models of
motivation can be combined with some traditional agent architectures for
game-playing agents.
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