Chapter 2
A Basic Logic of Formal Inconsistency: mbC

In [1], the study of LFI starts with mbC, which is basic in the following sense: it starts with positive classical logic (which is assumed as a reasonable basis—in Chap. 5, some LFI will be studied which are based on logics other than positive classical logic) and has a negation and a consistency operator which are added with minimal properties to satisfy the definition of LFI.

2.1 Introducing mbC

Since the first chapters of the book are exclusively devoted to propositional logics, some notation which will be used throughout the rest of the book will now be defined. From this chapter on, and in the rest of the book, the symbol ■ is used to mean the end of a definition, while □ is used to indicate the end of a proof, being omitted when a proof is not given explicitly.

Definition 2.1.1 (Propositional signatures) A propositional signature is a set Θ of symbols called connectives, together with the information concerning the arity of each connective.

Notation 2.1.2 For the entirety of the book the following symbols will be used for logical connectives (the intended meaning and the arity of each connective are included in the list below): ∧ (conjunction, binary); ∨ (disjunction, binary); → (implication, binary); ¬ (weak negation, unary); ◦ (consistency operator, unary); • (inconsistency operator, unary); ∼ (strong negation, unary); ⊥ (bottom formula, 0-ary, i.e., a propositional constant).
Definition 2.1.3 Consider the following propositional signatures that will be used thereafter:
- $\Sigma = \{\land, \lor, \rightarrow, \neg, o\}$;
- $\Sigma_\ast = \{\land, \lor, \rightarrow, \neg, \bullet\}$;
- $\Sigma_0 = \{\land, \lor, \rightarrow, \neg\}$;
- $\Sigma_+ = \{\land, \lor, \rightarrow\}$;
- $\Sigma_\circ = \{\land, \lor, \rightarrow, \neg\}$;
- $\Sigma_1 = \{\land, \lor, \rightarrow, \neg, \sim\}$;
- $\Sigma_2 = \{\bot, \land, \lor, \rightarrow, \neg\}$;
- $\Sigma_1 = \{\bot, \rightarrow, \neg, o\}$.

Let $\text{Var} = \{p_1, p_2, \ldots\}$ be a denumerable set of propositional variables (will be fixed henceforth), and let Θ be any propositional signature. The propositional language generated by Θ from Var will be denoted by L_{Θ}.

In this book we will deal exclusively with so-called Tarskian logics (see, for instance, [2]):

Definition 2.1.4 (Tarskian Logic) A logic L defined over a language L, which has a consequence relation \vdash, is Tarskian if it satisfies the following properties, for every $\Gamma \cup \Delta \cup \{\alpha\} \subseteq L$:

(i) if $\alpha \in \Gamma$ then $\Gamma \vdash \alpha$;
(ii) if $\Gamma \vdash \alpha$ and $\Gamma \subseteq \Delta$ then $\Delta \vdash \alpha$;
(iii) if $\Delta \vdash \alpha$ and $\Gamma \vdash \beta$ for every $\beta \in \Delta$ then $\Gamma \vdash \alpha$.

A logic satisfying item (ii) above is called monotonic. A logic L is said to be finitary if it satisfies the following:

(iv) if $\Gamma \vdash \alpha$ then there exists a finite subset Γ_0 of Γ such that $\Gamma_0 \vdash \alpha$.

Finally, a L defined over a propositional language L generated by a signature from a set of propositional variables is called structural if it satisfies the following property:

(v) if $\Gamma \vdash \alpha$ then $\sigma[\Gamma] \vdash \sigma(\alpha)$, for every substitution σ of formulas for variables.\footnote{In this book the following standard notation will be adopted: given a function f and a subset A of its domain, $f[A]$ will denote the set \{ $f(a) : a \in A$ \}.}

A propositional logic is standard if it is Tarskian, finitary and structural (see [2]).

Notation 2.1.5 Let $L = \langle L, \vdash \rangle$ be a logic. Let α be a formula in L and let $X_1 \ldots X_n$ (for $n \geq 1$) be a finite sequence such that each X_i is either a set of formulas in L or a formula in L. Then, as usual, $X_1, \ldots, X_n \vdash \alpha$ will stand for $X'_1 \cup \ldots \cup X'_n \vdash \alpha$.
where, for each \(i \), \(X'_i \) is \(X_i \), if \(X_i \) is a set of formulas, or \(X'_i \) is \(\{ X_i \} \), if \(X_i \) is a formula. Thus, for instance, if \(\Gamma \) and \(\Delta \) are sets of formulas and \(\{ \alpha, \beta, \alpha_1, \ldots, \alpha_n \} \) is a set of formulas then

\[
\Gamma, \alpha \vdash \beta; \quad \alpha \vdash \beta; \quad \Gamma, \Delta \vdash \beta; \quad \alpha_1, \ldots, \alpha_n \vdash \beta
\]

will stand for

\[
\Gamma \cup \{ \alpha \} \vdash \beta; \quad \{ \alpha \} \vdash \beta; \quad \Gamma \cup \Delta \vdash \beta; \quad \{ \alpha_1, \ldots, \alpha_n \} \vdash \beta
\]

respectively.

The main notion of this book can now be defined rigorously: the Logics of Formal Inconsistency.

Definition 2.1.6 A Tarskian logic \(\mathcal{L} \) is *paraconsistent* if it has a (primitive or defined) negation \(\neg \) such that \(\alpha, \neg \alpha \not\vdash \beta \) for some formulas \(\alpha \) and \(\beta \) in the language of \(\mathcal{L} \).

If \(\mathcal{L} \) has a deductive implication \(\rightarrow \), in the sense that it satisfies the Deduction meta-theorem DMT (see Proposition 2.1.14(i) below), then \(\mathcal{L} \) is paraconsistent iff the schema formula \(\alpha \rightarrow (\neg \alpha \rightarrow \beta) \) is not valid. That is, the *explosion law* is not valid in \(\mathcal{L} \) with respect to the negation \(\neg \). In other words, the negation \(\neg \) is not *explosive*.

The idea behind LFIs is to have a paraconsistent logic in which the explosion law is allowed in a *local* or *controlled* way. This is attained by the existence of a set of formulas \(\bigcirc(p) \), depending exclusively on a single propositional variable \(p \), such that the set \(\bigcirc(\alpha) \), together with a contradiction \(\{ \alpha, \neg \alpha \} \) is explosive or logically trivial, that is: \(\bigcirc(\alpha), \alpha, \neg \alpha \not\vdash \beta \) for every \(\alpha \) and \(\beta \). A logic satisfying this property is called *gently explosive* in \([1, 3]\). Of course, it must be also required that \(\bigcirc(\alpha) \) together with \(\alpha \) not be trivial, as well as the combination of \(\bigcirc(\alpha) \) with \(\neg \alpha \) (otherwise, the principle of gently explosiveness will be redundant). As we shall see, there exists three ways to introduce LFIs. The original one (proposed in \([3]\)) is the following:

Definition 2.1.7 Let \(\mathcal{L} = (\Theta, \vdash) \) be a standard logic. Assume that the signature \(\Theta \) of \(\mathcal{L} \) contains a negation \(\neg \), and let \(\bigcirc(p) \) be a nonempty set of formulas depending exactly on the propositional variable \(p \). Accordingly, \(\mathcal{L} \) is a Logic of Formal Inconsistency (an LFI, for short) (with respect to \(\neg \) and \(\bigcirc(p) \)) if the following holds (here, \(\bigcirc(\varphi) = \{ \psi(\varphi) : \psi(p) \in \bigcirc(p) \} \)):

(i) \(\varphi, \neg \varphi \not\vdash \psi \) for some \(\varphi \) and \(\psi \), i.e., \(\mathcal{L} \) is not explosive w.r.t. \(\neg \);

(ii) there are two formulas \(\alpha \) and \(\beta \) such that

(ii.a) \(\bigcirc(\alpha), \alpha \not\vdash \beta \);

(ii.b) \(\bigcirc(\alpha), \neg \alpha \not\vdash \beta \);
(iii) $\bigcirc(\phi), \phi, \neg \phi \vdash \psi$ for every ϕ and ψ.

When $\bigcirc(p)$ is a singleton, its element will be denoted by $\circ p$, where \circ is the consistency operator. Item (i) of the above definition states that an LFI is, by definition, non-explosive (w.r.t. \neg). Because of item (iii), \mathcal{L} is said to be gently explosive w.r.t. \neg and $\bigcirc(p)$.

Observe that clauses (i) and (ii) are existential, while (iii) is universal. The pair of witnesses required to satisfy (i) and (ii) are possibly different, but (ii) is composed by two clauses, both of them being satisfied by the same pair (α, β). This could be weakened, obtaining the following weaker notion of LFIs:

Definition 2.1.8 Let $\mathcal{L} = (\Theta, \vdash)$ be a standard logic. Assume that the signature Θ of \mathcal{L} contains a negation \neg, and let $\bigcirc(p)$ be a nonempty set of formulas depending exactly on the propositional variable p. Then \mathcal{L} is a weak LFI (with respect to \neg and $\bigcirc(p)$) if the following holds:

(i) $\phi, \neg \phi \nvdash \psi$ for some ϕ and ψ;
(ii) $\bigcirc(\phi), \phi \nvdash \psi$ for some ϕ and ψ;
(iii) $\bigcirc(\phi), \neg \phi \nvdash \psi$ for some ϕ and ψ; and
(iv) $\bigcirc(\phi), \phi, \neg \phi \vdash \psi$ for every ϕ and ψ.

Observe that any LFI is a weak LFI, but the converse is not necessarily true. The notion of weak LFI was proposed as an alternative to the original one in [4–6], since it is more uniform: the sets $\{\alpha, \neg \alpha\}, \{\alpha, \circ \alpha\}$ and $\{\neg \alpha, \circ \alpha\}$ are not always deductively trivial, but the set $\{\alpha, \neg \alpha, \circ \alpha\}$ is always deductively trivial.² Finally, a stronger notion of LFIs (which is also more uniform than the original definition) could be proposed:

Definition 2.1.9 Let $\mathcal{L} = (\Theta, \vdash)$ be a standard logic. Assume that the signature Θ of \mathcal{L} contains a negation \neg, and let $\bigcirc(p)$ be a nonempty set of formulas depending exactly on the propositional variable p. Then \mathcal{L} is a strong LFI (with respect to \neg and $\bigcirc(p)$) if the following holds:

(i) there are two formulas α and β such that
 (i.a) $\alpha, \neg \alpha \nvdash \beta$;
 (i.b) $\bigcirc(\alpha), \alpha \nvdash \beta$;
 (i.c) $\bigcirc(\alpha), \neg \alpha \nvdash \beta$; and
(ii) $\bigcirc(\phi), \phi, \neg \phi \vdash \psi$ for every ϕ and ψ.

²It should be observed that the weak LFIs investigated in the three references mentioned above are also strong LFIs in the sense of Definition 2.1.9.
Remark 2.1.10 Clearly, any strong LFI is an LFI, but the converse is not necessarily true. It should be observed that all the LFI introduced in the previous literature are strong LFI. Moreover, if \(\mathcal{L} \) is a propositional logic then \(\mathcal{L} \) is a strong LFI whenever the following holds:

(i) if \(p \) and \(q \) are two different propositional variables then

- (i.a) \(p, \neg p \not\vDash q \);
- (i.b) \(\lozenge(p), p \not\vDash q \);
- (i.c) \(\lozenge(p), \neg p \not\vDash q \); and

(ii) \(\lozenge(\varphi), \varphi, \neg \varphi \vdash \psi \) for every \(\varphi \) and \(\psi \).

Because of its simplicity, conditions (i) and (ii) above will be used along the rest of the book in order to prove that a given logic is a strong LFI.

The general definition of LFI encompasses a wide range of paraconsistent logics. In order to formally express the properties of consistency, any logic featuring a consistency connective must present a set of logical axiom schemas and semantic rules governing this connective. Along these lines, in [1], a fundamental propositional LFI known as mbC was first introduced. Starting from positive classical logic plus tertium non datur (\(\alpha \lor \neg \alpha \)), mbC is intended to comply with the above definition in a minimal way: an axiom schema called (bc1) is added solely to describe the expected behavior of the consistency operator \(\circ \), namely, the gentle explosion law (see Definition 2.1.12). In what follows, this logic will be described in its original language along with the statement of soundness and completeness theorems with respect to paraconsistent valuations.

Definition 2.1.11 (Formula Complexity) The complexity of a given formula \(\varphi \in \mathcal{L}_\Sigma \), denoted by \(l(\varphi) \), is recursively defined as follows:

1. If \(\varphi = p \), where \(p \in \text{Var} \), then \(l(\varphi) = 1 \);
2. If \(\varphi = \neg \alpha \), then \(l(\varphi) = l(\alpha) + 1 \);
3. If \(\varphi = \circ \alpha \), then \(l(\varphi) = l(\alpha) + 2 \);
4. If \(\varphi = \alpha \# \beta \), where \(\# \in \{ \land, \lor, \rightarrow \} \), then \(l(\varphi) = l(\alpha) + l(\beta) + 1 \).

Definition 2.1.12 (mbC) The logic mbC is defined over the language \(\mathcal{L}_\Sigma \) by the Hilbert calculus:

Axiom schemas:

\[
\alpha \rightarrow (\beta \rightarrow \alpha) \quad \text{(Ax1)}
\]

\[
((\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) \quad \text{(Ax2)}
\]

\[
\alpha \rightarrow (\beta \rightarrow (\alpha \land \beta)) \quad \text{(Ax3)}
\]

\[
(\alpha \land \beta) \rightarrow \alpha \quad \text{(Ax4)}
\]
Inference rule:
\[
\frac{\alpha \quad \alpha \rightarrow \beta}{\beta} \quad (\text{MP})
\]

Axiom (bc1) is called the \textit{gentle explosion law}. In Theorem 2.3.2, we shall prove that, as expected, the logic \textsf{mbC} is an \textsf{LFI}.

\textbf{Definition 2.1.13} Let $\Gamma \cup \{\varphi\} \subseteq \mathcal{L}_\Sigma$ be a set of formulas. A \textit{derivation of φ from Γ in \textsf{mbC}} is a finite sequence $\varphi_1 \cdots \varphi_n$ of formulas in \mathcal{L}_Σ such that φ_n is φ and, for every $1 \leq i \leq n$, the following holds:

1. φ_i is an instance of an axiom schema of \textsf{mbC}, or
2. $\varphi_i \in \Gamma$, or
3. there exist $j, k < i$ such that $\varphi_k = \varphi_j \rightarrow \varphi_i$ (and so φ_i follows from φ_j and φ_k by MP).

We say that φ is \textit{derivable from Γ in \textsf{mbC}} , denoted by $\Gamma \vdash_{\textsf{mbC}} \varphi$, if there exists a derivation of φ from Γ in \textsf{mbC}.

Observe that (Ax1)–(Ax9) plus MP constitute a Hilbert calculus over the signature $\Sigma_+ = \{\land, \lor, \rightarrow\}$ for positive classical propositional logic \textsf{CPL}+$^+$ (the negation-free fragment of classical propositional logic \textsf{CPL}, see Definition 2.4.3), which is in fact the basis for \textsf{mbC} and its extensions.

The following meta-theorems of \textsf{mbC} will prove to be quite useful throughout the entirety of the book.

\textbf{Proposition 2.1.14} The calculus \textsf{mbC} satisfies the following properties:

(i) $\Gamma, \alpha \vdash_{\textsf{mbC}} \beta$ iff $\Gamma \vdash_{\textsf{mbC}} \alpha \rightarrow \beta$ (Deduction meta-theorem, DMT).

(ii) If $\Gamma, \alpha \vdash_{\textsf{mbC}} \varphi$ and $\Gamma, \beta \vdash_{\textsf{mbC}} \varphi$ then $\Gamma, \alpha \lor \beta \vdash_{\textsf{mbC}} \varphi$.

(iii) If $\Gamma, \alpha \vdash_{\textsf{mbC}} \varphi$ and $\Gamma, \neg \alpha \vdash_{\textsf{mbC}} \varphi$ then $\Gamma \vdash_{\textsf{mbC}} \varphi$ (Proof-by-cases).
2.1 Introducing mbC

Proof (i) It is well known that, in order to prove that a Hilbert calculus satisfies DMT, it suffices to derive axioms (Ax1) and (Ax2), while MP must be the unique inference rule (see, for instance, [7]).

(ii) Suppose \(\Gamma, \alpha \vdash_{\text{mbC}} \varphi \) and \(\Gamma, \beta \vdash_{\text{mbC}} \varphi \). By DMT, both \(\Gamma \vdash_{\text{mbC}} \alpha \rightarrow \varphi \) and \(\Gamma \vdash_{\text{mbC}} \beta \rightarrow \varphi \). By axiom (Ax8), \(\vdash_{\text{mbC}} (\alpha \rightarrow \varphi) \rightarrow ((\beta \rightarrow \varphi) \rightarrow ((\alpha \lor \beta) \rightarrow \varphi)) \) and so \(\Gamma \vdash_{\text{mbC}} (\alpha \lor \beta) \rightarrow \varphi \) by MP twice. Therefore \(\Gamma, \alpha \lor \beta \vdash_{\text{mbC}} \varphi \), by MP.

(iii) This is a consequence of item (ii) and the fact that \(\alpha \lor \neg \alpha \) is a theorem of mbC. \(\square \)

2.2 A Valuation Semantics for mbC

In [8, 9], N.C.A. da Costa and E. H. Alves proposed an original valuation semantics for \(C_1 \) over \(\{0, 1\} \). A key feature of these valuations is that, as expected, they are defined as 2-valued CPL\(^+\)-valuations with respect to the binary connectives (conjunction, disjunction and implication). However, the paraconsistent negation \(\neg \) has a non-deterministic behavior w.r.t. this semantics: in general, if one of such valuations assigns the value 1 to a formula \(\alpha \), then the formula \(\neg \alpha \) can receive either the value 0 or the value 1 (but not both) under the same valuation. That is: the truth-value of \(\alpha \) does not uniquely determine the truth-value of \(\neg \alpha \).

This kind of semantics (sometimes called bivaluations) were generalized to several LFI\(s \) in [1]. Based on that approach, in this section the logic mbC will be semantically characterized by a suitable valuation semantics over \(\{0, 1\} \). The same will be done for several other LFI\(s \) in the next chapters of the book.

Definition 2.2.1 (Valuations for mbC) A function \(v : \mathcal{L}_\Sigma \rightarrow \{0, 1\} \) is a valuation for mbC, or an mbC-valuation, if it satisfies the following clauses:

\[
\begin{align*}
(v\text{And}) & \quad v(\alpha \land \beta) = 1 \iff v(\alpha) = 1 \text{ and } v(\beta) = 1 \\
(v\text{Or}) & \quad v(\alpha \lor \beta) = 1 \iff v(\alpha) = 1 \text{ or } v(\beta) = 1 \\
(v\text{Imp}) & \quad v(\alpha \rightarrow \beta) = 1 \iff v(\alpha) = 0 \text{ or } v(\beta) = 1 \\
(v\text{Neg}) & \quad v(\neg \alpha) = 0 \implies v(\alpha) = 1 \\
(v\text{Con}) & \quad v(\circ \alpha) = 1 \implies v(\alpha) = 0 \text{ or } v(\neg \alpha) = 0.
\end{align*}
\]

The set of all such valuations will be designated by \(V_{\text{mbC}} \). \(\blacksquare \)

It should be observed that each mbC-valuation \(v \) assigns an unique truth-value (0 or 1) to each formula of mbC. However, because of clauses (vNeg) and (vCon), the value \(v(\# \alpha) \) is not necessarily determined by the value \(v(\alpha) \) of the immediate subformula \(\alpha \), for \(\# \in \{\neg, \circ\} \).

For every \(\Gamma \cup \{\varphi\} \subseteq \mathcal{L}_\Sigma \), the following semantical consequence relation w.r.t. the set \(V_{\text{mbC}} \) of mbC-valuations can be naturally defined: \(\Gamma \vdash_{\text{mbC}} \varphi \) iff, for every \(v \in V_{\text{mbC}} \), if \(v(\gamma) = 1 \) for every \(\gamma \in \Gamma \) then \(v(\varphi) = 1 \). The set \(V_{\text{mbC}} \) constitutes a sound and complete semantics for the logic mbC, as it will be proved below.
Theorem 2.2.2 (Soundness) For every $\Gamma \cup \{\varphi\} \subseteq \mathcal{L}_T$:

$$\Gamma \vdash_{mbC} \varphi \quad \implies \quad \Gamma \vdash_{mbC} \varphi.$$

Proof The first step is to show the following:

Facts: Let v be an mbC-valuation.

1. If γ is an instance of a mbC axiom schema, then $v(\gamma) = 1$.

2. If α and β are formulas such that $v(\alpha) = v(\alpha \rightarrow \beta) = 1$, then $v(\beta) = 1$.

In order to prove (1), each mbC axiom schema must be checked. Observe that the clauses for the connectives \land, \lor and \rightarrow are the usual ones which characterize the truth-tables for these connectives in classical logic. Thus, axioms $Ax1$–$Ax9$ (corresponding to positive classical logic) are sound w.r.t. this valuation semantics. Concerning axiom $Ax10$, let α be a formula. If $v(\neg \alpha) = 1$ then $v(\alpha \lor \neg \alpha) = 1$, by ($vOr$). Otherwise, if $v(\neg \alpha) = 0$ then $v(\alpha) = 1$, by ($vNeg$), whence $v(\alpha \lor \neg \alpha) = 1$, by ($vOr$). Finally, let $\gamma = \alpha \rightarrow (\alpha \rightarrow (\neg \alpha \rightarrow \beta))$ be an instance of axiom $bc1$. If $v(\alpha \alpha) = 0$ then $v(\gamma) = 1$, by ($vImp$). Otherwise, if $v(\alpha \alpha) = 1$ then either $v(\alpha) = 0$ or $v(\neg \alpha) = 0$. In both cases it is easy to see that $v(\gamma) = 1$, by ($vImp$).

Item (2) is an easy consequence of the clause ($vImp$) from Definition 2.2.1. Once these facts are proved, the rest of the proof follows by induction on the length n of a derivation $\varphi_1 \ldots \varphi_n = \varphi$ in mbC of φ from Γ. Indeed, it will be proven by induction on n that, for any mbC-valuation v such that $v[\Gamma] \subseteq \{1\}$, $v(\varphi_i) = 1$ for every $1 \leq i \leq n$. In particular, $v(\varphi) = 1$, showing that $\Gamma \vdash_{mbC} \varphi$ as required.

Thus, if $n = 1$, then φ_1 is either an instance of an axiom schema of mbC (and so the result follows by Facts(1)), or $\varphi_1 \in \Gamma$ (and so the result follows by hypothesis). Suppose now that the result holds for every formula ψ admitting a derivation in mbC from Γ of length $k \leq n$ (induction hypothesis), and suppose that $\varphi_1 \ldots \varphi_{n+1} = \varphi$ is a derivation in mbC of φ from Γ with length $n + 1$. By induction hypothesis, $v(\varphi_i) = 1$ for $1 \leq i \leq n$ (as each φ_i is derived from Γ in mbC with a derivation of length i). If $\varphi_{n+1} \in \Gamma$ or φ_{n+1} is an instance of an mbC axiom schema, the proof is as above. Otherwise, there exist $j, k \leq n$ such that $\varphi_k = \varphi_j \rightarrow \varphi_{n+1}$ and φ_{n+1} is obtained from φ_j and φ_k by MP. By Facts(2), $v(\varphi_{n+1}) = 1$. This completes the proof. \(\square\)

The proof of completeness needs some definitions and results. Recall the notion of Tarskian Logic from Definition 2.1.4.

Definition 2.2.3 For a given Tarskian logic \mathcal{L} over the language \mathcal{L}, let $\Gamma \cup \{\varphi\} \subseteq \mathcal{L}$. The set Γ is maximal non-trivial with respect to φ in \mathcal{L} if $\Gamma \not\vdash_{\mathcal{L}} \varphi$ but $\Gamma, \psi \vdash_{\mathcal{L}} \varphi$ for any $\psi \not\in \Gamma$.

Definition 2.2.4 Let \mathcal{L} be a Tarskian logic. A set of formulas Γ is closed in \mathcal{L}, or a closed theory of \mathcal{L}, if the following holds for every formula ψ: $\Gamma \vdash_{\mathcal{L}} \psi$ iff $\psi \in \Gamma$.

Lemma 2.2.5 Any set of formulas maximal non-trivial with respect to φ in \mathcal{L} is closed, provided that \mathcal{L} is Tarskian.
2.2 A Valuation Semantics for mbC

Proof Let Γ be a set of formulas maximal non-trivial with respect to φ in \mathcal{L}. If $\psi \in \Gamma$ then $\Gamma \vdash \varphi$, as \mathcal{L} is Tarskian. Conversely, if $\Gamma \vdash \neg \varphi$, suppose that $\psi \notin \Gamma$. Then, by Definition 2.2.3, $\Gamma, \psi \vdash \varphi$. However, given that \mathcal{L} is Tarskian, it follows that $\Gamma \vdash \varphi$, contradicting the hypothesis that Γ is maximal non-trivial with respect to φ in \mathcal{L}. Then $\psi \in \Gamma$ and so Γ is a closed theory. □

Now consider the following classical result:

Theorem 2.2.6 (Lindenbaum-Łos) Let \mathcal{L} be a Tarskian and finitary logic over the language \mathcal{L}. Let $\Gamma \cup \{ \varphi \} \subseteq \mathcal{L}$ be such that $\Gamma \not\vdash \varphi$. There exists then a set Δ such that $\Gamma \subseteq \Delta \subseteq \mathcal{L}$ with Δ maximal non-trivial with respect to φ in \mathcal{L}.

Proof We will adapt the proof in [2] (Theorem 22.2). By the well-ordering principle, assume that the set \mathcal{L} is well-ordered as a transfinite sequence $(\varphi_\lambda)_{\lambda<\theta}$, where θ is an ordinal. By transfinite recursion, a transfinite and increasing sequence of theories $(\Gamma_\lambda)_{\lambda<\theta}$ is defined as follows:

$$
\Gamma_0 = \Gamma, \quad \text{and for every } \lambda < \theta, \\
\Gamma_\lambda = \begin{cases}
\Gamma_\mu & \text{if } \lambda = \mu + 1 \text{ and } \Gamma_\mu, \varphi_\mu \vdash \varphi \\
\Gamma_\mu \cup \{ \varphi_\mu \} & \text{if } \lambda = \mu + 1 \text{ and } \Gamma_\mu, \varphi_\mu \not\vdash \varphi \\
\bigcup_{\mu<\lambda} \Gamma_\mu & \text{if } \lambda \text{ is a limit ordinal.}
\end{cases}
$$

Then $\Delta = \bigcup_{\lambda<\theta} \Gamma_\lambda$ satisfies the requirements. Indeed, observe firstly that $\Gamma \subseteq \Delta$. By transfinite induction, it is easy to prove that $\Gamma_\lambda \not\vdash \varphi$, for every $\lambda < \theta$: if $\lambda = 0$ then $\Gamma_0 \not\vdash \varphi$, by hypothesis. Assuming that $\Gamma_\mu \not\vdash \varphi$ for every $\mu < \lambda < \theta$, suppose that $\lambda = \mu + 1 < \theta$. Then $\Gamma_\mu \not\vdash \varphi$, by induction hypothesis, and so $\Gamma_\lambda \not\vdash \varphi$, by definition of Γ_λ. If λ is a limit ordinal, suppose that $\Gamma_\lambda \vdash \varphi$. By finitariness of \mathcal{L}, there exists a finite subset Γ^{fin} of Γ_λ such that $\Gamma^{fin} \vdash \varphi$. But $\Gamma^{fin} \subseteq \Gamma_\mu$ if $\mu < \kappa$ and so $\Gamma^{fin} \subseteq \Gamma_\mu$ for some $\mu < \lambda$. This means that $\Gamma_\mu \not\vdash \varphi$ for some $\mu < \lambda$, contradicting the induction hypothesis.

By a similar argument, $\Delta \not\vdash \varphi$ is proved. Suppose now that $\psi \notin \Delta$. Then $\psi = \varphi_\mu$ for some $\mu < \theta$ and so $\varphi_\mu \notin \Gamma_{\mu+1}$, by definition of Δ. By construction of $\Gamma_{\mu+1}$, it follows that $\Gamma_\mu, \varphi_\mu \not\vdash \varphi$ and so, by monotonicity of \mathcal{L}, it follows that $\Delta, \psi \not\vdash \varphi$. This shows that Δ is maximal non-trivial with respect to φ in \mathcal{L}. □

Every logic \mathcal{L} defined by a Hilbert calculus, where the inference rules are finitary, is Tarskian and finitary, and so Theorem 2.2.6 holds for \mathcal{L}. In particular, Theorem 2.2.6 holds for mbC.

Theorem 2.2.7 Let $\Gamma \cup \{ \varphi \} \subseteq \mathcal{L}_\Sigma$, with Γ maximal non-trivial with respect to φ in mbC. The mapping $v : \mathcal{L}_\Sigma \rightarrow \{0, 1\}$ defined by:

$$
v(\psi) = 1 \iff \psi \in \Gamma
$$

for all $\psi \in \mathcal{L}_\Sigma$ is a valuation for mbC.

3Since it is well-known, it is equivalent to the Axiom of Choice.
Proof It will be proved that v satisfies all the clauses of Definition 2.2.1.

1. Assume that $v(\alpha \lor \beta) = 1$. Then $\alpha \lor \beta \in \Gamma$. Suppose that neither $\alpha \in \Gamma$ nor $\beta \in \Gamma$. Then $\Gamma, \alpha \vdash_{mbC} \varphi$ and $\Gamma, \beta \vdash_{mbC} \varphi$. So $\Gamma, \alpha \lor \beta \vdash_{mbC} \varphi$, by Proposition 2.1.14(ii). But then $\Gamma \vdash_{mbC} \varphi$, which is a contradiction. Thus, either $\alpha \in \Gamma$ or $\beta \in \Gamma$ and so either $v(\alpha) = 1$ or $v(\beta) = 1$. Conversely, suppose that either $v(\alpha) = 1$ or $v(\beta) = 1$. Thus, either $\alpha \in \Gamma$ or $\beta \in \Gamma$. Suppose that $\alpha \in \Gamma$. As $\alpha \rightarrow (\alpha \lor \beta) \in \Gamma$, by axiom (Ax6) and by Lemma 2.2.5, it follows that $\alpha \lor \beta \in \Gamma$, by MP. From this, $v(\alpha \lor \beta) = 1$. Analogously, $\beta \in \Gamma$ then $v(\alpha \lor \beta) = 1$ (now by using axiom (Ax7)). This shows that v satisfies clause (vOr) of Definition 2.2.1.

2. Assume that $v(\alpha \land \beta) = 1$. Then $\alpha \land \beta \in \Gamma$. As $(\alpha \land \beta) \rightarrow \alpha \in \Gamma$, by axiom (Ax4) and Lemma 2.2.5, it follows that $\alpha \in \Gamma$ by MP. From this, $v(\alpha) = 1$. Analogously, $v(\beta) = 1$ is proved by axiom (Ax5). Conversely, suppose that $v(\alpha) = 1$ and $v(\beta) = 1$. Then $\alpha \in \Gamma$ and $\beta \in \Gamma$. But $\alpha \rightarrow (\beta \rightarrow (\alpha \land \beta)) \in \Gamma$, by axiom (Ax3) and by Lemma 2.2.5. Then, by applying MP twice, it follows that $\alpha \land \beta \in \Gamma$ and so $v(\alpha \land \beta) = 1$. This shows that v satisfies clause $(vAnd)$ of Definition 2.2.1.

3. Suppose that $v(\alpha \rightarrow \beta) = 1$. Then $\alpha \rightarrow \beta \in \Gamma$. If $\alpha \in \Gamma$, then $\beta \in \Gamma$ by MP and Lemma 2.2.5. Then $v(\alpha) = 1$ implies that $v(\beta) = 1$. This shows that either $v(\alpha) = 0$ or $v(\beta) = 1$. Conversely, suppose that either $v(\alpha) = 0$ or $v(\beta) = 1$. Then either $\alpha \notin \Gamma$ or $\beta \notin \Gamma$. If $\beta \in \Gamma$, then $\alpha \rightarrow \beta \in \Gamma$ by axiom (Ax1), MP and Lemma 2.2.5. So $v(\alpha \rightarrow \beta) = 1$. Now, if $\alpha \notin \Gamma$ then, by the maximality of Γ, it follows that $\Gamma, \alpha \vdash_{mbC} \varphi$. Suppose, by contradiction, that $\alpha \rightarrow \beta \notin \Gamma$. Then, again by the maximality of Γ, it follows that $\Gamma, \alpha \rightarrow \beta \vdash_{mbC} \varphi$. Hence $\Gamma, (\alpha \rightarrow \beta) \lor \alpha \vdash_{mbC} \varphi$, by Proposition 2.1.14(ii). But then $\Gamma \vdash_{mbC} \varphi$ by axiom (Ax9), which leads to a contradiction. Therefore $\alpha \rightarrow \beta \in \Gamma$ and so $v(\alpha \rightarrow \beta) = 1$, showing that v satisfies clause $(vImp)$ of Definition 2.2.1.

4. Suppose that $v(\neg \alpha) = 0$ and, by contradiction, that also $v(\alpha) = 0$. Then $\neg \alpha \notin \Gamma$ and $\alpha \notin \Gamma$. As Γ is maximal, it follows that $\Gamma, \neg \alpha \vdash_{mbC} \varphi$ and $\Gamma, \alpha \vdash_{mbC} \varphi$. By Proposition 2.1.14(iii), $\Gamma \vdash_{mbC} \varphi$, which is a contradiction. Therefore $v(\neg \alpha) = 0$ implies that $v(\alpha) = 1$, and so v satisfies clause $(vNeg)$ of Definition 2.2.1.

5. Suppose that $v(\circ \alpha) = 1$ and, by contradiction, that both $v(\alpha) = 1$ and $v(\neg \alpha) = 1$. Then $\circ \alpha \in \Gamma$ and both $\alpha \in \Gamma$ and $\neg \alpha \in \Gamma$. Thus, by axiom (bc1), MP twice and Lemma 2.2.5, $\beta \in \Gamma$ for every β. In particular, $\varphi \in \Gamma$, which is a contradiction. Therefore: $v(\circ \alpha) = 1$ implies that either $v(\alpha) = 0$ or $v(\neg \alpha) = 0$. This means that v satisfies clause $(vCon)$ of Definition 2.2.1.

Theorem 2.2.8 (Completeness of mbC w.r.t. valuations) For every $\Gamma \cup \{\varphi\} \subseteq \mathcal{L}_{\Sigma}$:

$$\Gamma \vdash_{mbC} \varphi \quad \implies \quad \Gamma \vdash_{mbC} \varphi$$

Proof Suppose $\Gamma \not\vdash_{mbC} \varphi$ and let Δ be a maximal non-trivial set with respect to φ in mbC extending Γ (using Theorem 2.2.6). By Theorem 2.2.7, there is an mbC-valuation v, such that $v[\Gamma] \subseteq \{1\}$ (as $\Gamma \subseteq \Delta$) but $v(\varphi) = 0$ (as $\varphi \notin \Delta$). Therefore, $\Gamma \not\vdash_{mbC} \varphi$ and the theorem follows by contraposition. \qed
2.3 Applications of mbC-Valuations

From the soundness and completeness theorems for mbC w.r.t. valuations proved in the previous section, some properties of mbC can now be stated semantically, instead of using the associated Hilbert calculus.

We begin by observing that mbC-valuations can be used to construct truth-tables which exhibit a non-deterministic character. Indeed, the clauses for mbC-valuations corresponding to the binary connectives →, ∨ and ∧ (see Definition 2.2.1) define the usual truth-tables for these connectives over \{0, 1\}. On the other hand, the paraconsistent negation \(\neg\) defines the following diagram:

\[
\begin{array}{cc}
\alpha & \neg\alpha \\
1 & 1 \quad v_1 \\
0 & 1 \quad v_2 \\
0 & 1 \quad v_3 \\
\end{array}
\]

This means that there are three mbC-valuations (or scenarios) concerning a proposition \(\alpha\) and its paraconsistent negation \(\neg\alpha\), namely \(v_1\), \(v_2\) and \(v_3\). According to \(v_1\), \(v_1(\alpha) = v_1(\neg\alpha) = 1\). According to \(v_2\), \(v_2(\alpha) = 1\) but \(v_2(\neg\alpha) = 0\). Finally, in the third scenario \(v_3\), \(v_3(\alpha) = 0\) and \(v_3(\neg\alpha) = 1\). Observe that the fourth scenario, namely \(v_4(\alpha) = v_4(\neg\alpha) = 0\), is not allowed for mbC-valuations, in virtue of the clause (vNeg): \(\alpha\) and \(\neg\alpha\) can be both simultaneously true, but they cannot be simultaneously false. This means that mbC is paraconsistent but not paracomplete.

Concerning the other non-classical connective, the consistency operator \(\circ\), it can be better understood in terms of the formulas \(\alpha\) and \(\neg\alpha\) instead of analyzing \(\alpha\) or \(\neg\alpha\) alone:

Table 2.1

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\neg\alpha)</th>
<th>(\circ\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(v_1)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(v_2)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(v_3)</td>
</tr>
<tr>
<td>0</td>
<td>(v_4)</td>
<td>(v_5)</td>
</tr>
</tbody>
</table>

\[^{4}\text{However, such tables do not correspond to non-deterministic matrices in the sense of Avron and Lev (see [10, 11]). The relationship between valuations for LFI}s and non-deterministic matrices will be analyzed in Chap. 6.}\]

\[^{5}\text{There are logics which are simultaneously paraconsistent and paracomplete, that is, that allow the fourth scenario in which \(\alpha\) and \(\neg\alpha\) are both false. Logics of this kind are frequently called paranormal by the literature. One example of paranormality is a tetravalent modal logic that can be associated with Monteiro’s tetravalent modal algebras, see [12]. This example will be analyzed in Chap. 5.}\]
Observe that, if \(v(\alpha) = v(\neg \alpha) = 1\), then \(v(\circ \alpha)\) is forced to be 0. Otherwise, if \(v(\alpha) \neq v(\neg \alpha)\) then the truth-value \(v(\circ \alpha)\) of \(\circ \alpha\) is arbitrary in \(\text{mbC}\).

Remark 2.3.1 Diagrams as the one displayed in Table 2.1 can be naturally associated to the non-deterministic valuation semantic over \(\{0, 1\}\) for \(\text{mbC}\) introduced in Definition 2.2.1. This idea was originally proposed by da Costa and Alves in [9], associated to the non-deterministic valuation semantic over \(\{0, 1\}\) for \(C_1\) defined there. It was proved by Fidel (see Theorem 7, p. 627 in [9]) that such diagrams, called quasi-matrices by Alves in [13],\(^6\) provide a decision procedure for testing tautologies in \(C_1\). It is easy to see that the same holds for \(\text{mbC}\) and for most of the LFI's to be analyzed in this book.

By using the soundness and completeness theorems for \(\text{mbC}\) w.r.t. valuations, it is easy to prove the following:

Theorem 2.3.2 Let \(\bigcirc(p) = \{\circ p\}\), for a propositional variable \(p\). Then the logic \(\text{mbC}\) is a strong LFI (w.r.t. \(\neg\) and \(\bigcirc(p)\)), according to Definition 2.1.9.

Proof Assume that \(p\) and \(q\) are two different propositional variables. By considering the valuation \(v_1\) of Table 2.1 and taking \(v_1(q) = 0\), it follows that \(p, \neg p \not\models_{\text{mbC}} q\) and clause (i.a) of Remark 2.1.10 thusly is satisfied. Now considering valuation \(v_2\) and taking \(v_2(q) = 0\), we show that \(\circ p, p \not\models_{\text{mbC}} q\) and clause (i.b) of Remark 2.1.10 is satisfied. By considering valuation \(v_4\) such that \(v_4(q) = 0\), it follows that \(\circ p, \neg p \not\models_{\text{mbC}} q\) and clause (i.c) of Remark 2.1.10 is satisfied. Finally, by means of the same table, it is clear that for no valuation it is the case that \(\alpha, \neg \alpha\) and \(\circ \alpha\) are simultaneously true. Thus, clause (ii) of Remark 2.1.10 is satisfied. This shows that \(\text{mbC}\) is a strong LFI w.r.t. \(\neg\) and \(\circ\). \(\square\)

The dependency of \(\circ \alpha\) on \(\{\alpha, \neg \alpha\}\), which was highlighted above, explains why the complexity \(l(\circ \alpha)\) of \(\circ \alpha\) is defined as \(l(\alpha) + 2\). That is, the complexity of \(\circ \alpha\) is strictly greater than the complexity of \(\alpha\) and \(\neg \alpha\) (recall Definition 2.1.11). By combining these non-deterministic truth-tables with the (deterministic) truth-table of conjunction, we can compare the consistency \(\circ \alpha\) with the non-contradiction \(\neg(\alpha \land \neg \alpha)\) on the one hand, and the inconsistency (or non-consistency) \(\neg \circ \alpha\) with the contradiction \(\alpha \land \neg \alpha\) on the other. This produces eight possible-scenarios (or \(\text{mbC}\)-valuations), which are depicted below.

\(^6\)It should be observed that Ivlev (see [14]) and other authors use the term ‘quasi-matrices’ to refer to non-deterministic matrices in the sense of of A. Avron and I. Lev.
From the table above, and by the adequacy of mbC w.r.t. valuations, the following becomes clear:

Proposition 2.3.3 In mbC the following holds:

1. $\alpha \land \neg \alpha \vdash \text{mbC} \neg \circ \alpha$ but $\neg \circ \alpha \not\vdash \text{mbC} \alpha \land \neg \alpha$;
2. $\circ \alpha \vdash \text{mbC} \neg (\alpha \land \neg \alpha)$ but $\neg (\alpha \land \neg \alpha) \not\vdash \text{mbC} \circ \alpha$.

Proof

1. By inspection of the table above, it follows that $\alpha \land \neg \alpha \models \text{mbC} \neg \circ \alpha$ but $\neg \circ \alpha \not\models \text{mbC} \alpha \land \neg \alpha$ (because of v_3, v_5, v_6 and v_8).
2. Looking at the table above, it follows that $\circ \alpha \models \text{mbC} \neg (\alpha \land \neg \alpha)$ but $\neg (\alpha \land \neg \alpha) \not\models \text{mbC} \circ \alpha$ (because of v_1, v_5 and v_8).

Item (1) of Proposition 2.3.3 shows that, in mbC, the notion of contradiction is strictly stronger than the notion of inconsistency (or non-consistency). In other words, in mbC every contradictory formula is inconsistent, but the converse is not always the case. By its turn, item (2) establishes that the notion of consistency is strictly stronger than the notion of non-contradiction in mbC. That is, every consistent formula is non-contradictory, but the converse does not hold in general.

Another simple example of application of mbC-valuations is the following:

Proposition 2.3.4 In mbC the following holds:

1. $\neg \alpha \rightarrow \beta \vdash \text{mbC} \alpha \lor \beta$ but $\alpha \lor \beta \not\vdash \text{mbC} \neg \alpha \rightarrow \beta$;
2. $\circ \alpha, \alpha \lor \beta \vdash \text{mbC} \neg \alpha \rightarrow \beta$.

Proof Consider the following diagram:

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>$\neg \alpha$</th>
<th>$\alpha \lor \beta$</th>
<th>$\neg \alpha \rightarrow \beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>v_1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>v_2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>v_3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>v_4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>v_5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>v_6</td>
</tr>
</tbody>
</table>

Clearly, $\neg \alpha \rightarrow \beta \models \text{mbC} \alpha \lor \beta$ but $\alpha \lor \beta \not\models \text{mbC} \neg \alpha \rightarrow \beta$, because of valuation v_3. However, $v_3(\alpha) = v_3(\neg \alpha) = 1$, so $v_3(\circ \alpha) = 0$. Accordingly, $\circ \alpha, \alpha \lor \beta \models \text{mbC} \neg \alpha \rightarrow \beta$ given that v_3, the unique countermodel for the inference $\alpha \lor \beta \models \text{mbC} \neg \alpha \rightarrow \beta$, does not satisfy the premises: $v_3[\{\circ \alpha, \alpha \lor \beta\}] \not\subseteq \{1\}$.
Finally, the following example, which comes from the same vein, shows that several contraposition rules for implication do not hold when the paraconsistent negation is taken into account:

Proposition 2.3.5 In \(\text{mbC} \) the following holds:

1. \(\alpha \rightarrow \beta \not\in \text{mbC} \) \(\neg \beta \rightarrow \neg \alpha \) but \(\circ \beta, \alpha \rightarrow \beta \not\in \text{mbC} \) \(\neg \beta \rightarrow \neg \alpha \);
2. \(\neg \alpha \rightarrow \beta \not\in \text{mbC} \) \(\beta \rightarrow \neg \alpha \) but \(\circ \beta, \neg \alpha \rightarrow \beta \not\in \text{mbC} \) \(\beta \rightarrow \neg \alpha \);
3. \(\neg \alpha \rightarrow \beta \not\in \text{mbC} \) \(\beta \rightarrow \alpha \) but \(\circ \beta, \neg \alpha \rightarrow \beta \not\in \text{mbC} \) \(\beta \rightarrow \alpha \);
4. \(\neg \alpha \rightarrow \beta \not\in \text{mbC} \) \(\beta \rightarrow \alpha \) but \(\circ \beta, \neg \alpha \rightarrow \beta \not\in \text{mbC} \) \(\beta \rightarrow \alpha \).

Proof Items (1) and (2). Consider the following diagram:

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\neg \alpha)</th>
<th>(\neg \beta)</th>
<th>(\alpha \rightarrow \beta)</th>
<th>(\neg \alpha \rightarrow \neg \beta)</th>
<th>(\beta \rightarrow \neg \alpha)</th>
<th>(\alpha \rightarrow \neg \beta)</th>
<th>(\beta \rightarrow \neg \alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>v₁</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>v₂</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>v₃</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>v₄</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>v₅</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>v₆</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>v₇</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>v₈</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>v₉</td>
<td></td>
</tr>
</tbody>
</table>

Because of valuation \(v₃ \), \(\alpha \rightarrow \beta \not\in \text{mbC} \) \(\neg \beta \rightarrow \neg \alpha \) and \(\alpha \rightarrow \neg \beta \not\in \text{mbC} \) \(\beta \rightarrow \neg \alpha \). But \(v₃(\beta) = v₃(\neg \beta) = 1 \), so \(v₃(\circ \beta) = 0 \). Using an argument similar to the proof found in Proposition 2.3.4, it follows that \(\circ \beta, \alpha \rightarrow \beta \not\in \text{mbC} \) \(\neg \beta \rightarrow \neg \alpha \) and \(\circ \beta, \alpha \rightarrow \neg \beta \not\in \text{mbC} \) \(\beta \rightarrow \neg \alpha \).

Items (3) and (4). Consider the following diagram:

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\neg \alpha)</th>
<th>(\neg \beta)</th>
<th>(\neg \alpha \rightarrow \beta)</th>
<th>(\neg \beta \rightarrow \alpha)</th>
<th>(\neg \alpha \rightarrow \neg \beta)</th>
<th>(\beta \rightarrow \alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>v₁</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>v₂</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>v₃</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>v₄</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>v₅</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>v₆</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>v₇</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>v₈</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>v₉</td>
</tr>
</tbody>
</table>

Because of valuation \(v₇ \), \(\neg \alpha \rightarrow \beta \not\in \text{mbC} \) \(\neg \beta \rightarrow \alpha \) and \(\neg \alpha \rightarrow \neg \beta \not\in \text{mbC} \) \(\beta \rightarrow \alpha \). As \(v₇(\beta) = v₇(\neg \beta) = 1 \), \(v₇(\circ \beta) = 0 \). Therefore, \(\circ \beta, \neg \alpha \rightarrow \beta \not\in \text{mbC} \) \(\neg \beta \rightarrow \alpha \) and \(\circ \beta, \neg \alpha \rightarrow \neg \beta \not\in \text{mbC} \) \(\beta \rightarrow \alpha \). □
Finally, valuation semantics allows one to clearly see that the logic \(\text{mbC} \) is not self-extensional in Wójcicki’s sense (see [15]). We say that a propositional (Tarskian) logic \(L \) satisfies weak replacement if the following holds: given formulas \(\alpha_i \) and \(\beta_i \) (for \(1 \leq i \leq n \)) such that \(\alpha_1 \equiv \beta_1, \ldots, \alpha_n \equiv \beta_n \), then \(\varphi(\alpha_1, \ldots, \alpha_n) \equiv \varphi(\beta_1, \ldots, \beta_n) \) for every formula \(\varphi(p_1, \ldots, p_n) \). Here, \(\alpha \equiv \beta \) is an abbreviation for \(\alpha \vdash L \beta \) and \(\beta \vdash L \alpha \). A logic is said to be self-extensional if it satisfies weak replacement.

It is easy to comprehend, by using valuations, that \(\text{mbC} \) does not satisfy weak replacement and so it is not self-extensional. Indeed, from \(\alpha \equiv \beta \), it does not follow in general that \(\# \alpha \equiv \# \beta \), for \(\# \in \{\sim, \circ\} \). For instance, \((p_1 \land p_2) \equiv (p_2 \land p_1) \). However, neither \(\sim(p_1 \land p_2) \equiv \sim(p_2 \land p_1) \) nor \(\circ(p_1 \land p_2) \equiv \circ(p_2 \land p_1) \): it is enough to consider a \(\text{mbC} \)-valuation \(v \) such that \(v(p_1 \land p_2) = 1 \), \(v(\sim(p_1 \land p_2)) = 1 \) (and so \(v(\circ(p_1 \land p_2)) = 0 \)), but \(v(\sim(p_2 \land p_1)) = 0 \) and \(v(\circ(p_2 \land p_1)) = 1 \).

Moreover, since \(\text{mbC} \) and several of its extensions do not admit a non-trivial logical consequence, they are not algebraizable even in the wide framework of Blok and Pigozzi (see [16–20]). The question of algebraizability of extensions of \(\text{mbC} \) will be analyzed in Chaps. 4 and 6.

2.4 Recovering Classical Logic Inside \(\text{mbC} \)

The laws governing the operator \(\sim \) of \(\text{mbC} \) define a paraconsistent negation, making it weaker than the classical negation (which will be represented from now on by the symbol \(\sim \)). In order to clarify the relationship between \(\text{mbC} \) and classical propositional logic (\(\text{CPL} \)), the notion of translations and conservative translations between logics, introduced in [21], will be used. In what follows, if \(* \) is a mapping defined on formulas and \(\Gamma \) is a set of formulas, then \(\Gamma^* \) is defined as \(\{ \gamma^* : \gamma \in \Gamma \} \).

Definition 2.4.1 (Translation between Logics ([21])) Let \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) be logics with sets of formulas \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \), respectively. A mapping \(* : \mathcal{L}_1 \to \mathcal{L}_2 \) is said to be a translation from \(\mathcal{L}_1 \) to \(\mathcal{L}_2 \) if, for every \(\Gamma \cup \{ \alpha \} \subseteq \mathcal{L}_1 \):

\[
\Gamma \vdash_{\mathcal{L}_1} \alpha \quad \implies \quad \Gamma^* \vdash_{\mathcal{L}_2} \alpha^*.
\]

And it is said to be a conservative translation if it satisfies the stronger property:

\[
\Gamma \vdash_{\mathcal{L}_1} \alpha \quad \iff \quad \Gamma^* \vdash_{\mathcal{L}_2} \alpha^*.
\]

Recall the notion of standard logic (Definition 2.1.4). A logic satisfying item (ii) of that definition is called monotonic, while a logic satisfying item (iv) is said to be finitary. The following result can be stated (see [6]):

Theorem 2.4.2 Let \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) be two logics, where \(\mathcal{L}_1 \) is finitary and \(\mathcal{L}_2 \) is monotonic, such that both logics have implications \(\rightarrow \) and \(\rightarrow' \) respectively, satisfying the Deduction meta-theorem DMT (see Proposition 2.1.14). Suppose that \(* : \mathcal{L}_1 \to \mathcal{L}_2 \) is a mapping for which:
A Basic Logic of Formal Inconsistency: mbC

\[\vdash L_1 \alpha \implies \vdash L_2 \alpha^* , \]

and this mapping is such that \((\alpha \to \beta)^* = \alpha^* \to \beta^*\). Then \(*\) is a translation from \(L_1\) to \(L_2\). If, additionally, both \(L_1\) and \(L_2\) are finitary and monotonic, and \(*\) satisfies the stronger property:

\[\vdash L_1 \alpha \iff \vdash L_2 \alpha^* , \]

then the mapping \(*\) is a conservative translation.

Proof Suppose that \(\Gamma \vdash_{L_1} \alpha\). By the finitariness of \(L_1\), there is a finite \(\Gamma_0 \subseteq \Gamma\) such that \(\Gamma_0 \vdash_{L_1} \alpha\). Suppose that \(\Gamma_0 = \{ \gamma_1, \ldots, \gamma_n \}\) is nonempty. Then, given the fact that \(\to\) satisfies DMT, \(\vdash_{L_1} \gamma_1 \to \left(\ldots \to (\gamma_n \to \alpha) \ldots \right)\). From the hypothesis on \(*\), it is the case that:

\[\vdash_{L_2} \left(\gamma_1 \to \left(\ldots \to (\gamma_n \to \alpha) \ldots \right) \right)^* \]

thus

\[\vdash_{L_2} \gamma_1^* \to' \left(\ldots \to' (\gamma_n^* \to' \alpha^*) \ldots \right) . \]

Given the fact that \(\to'\) satisfies DMT,

\[\gamma_1^*, \ldots, \gamma_n^* \vdash_{L_2} \alpha^* \]

and, given the monotonicity of \(L_2\), \(\Gamma^* \vdash_{L_2} \alpha^*\). The remaining is proved similarly. \(\square\)

Definition 2.4.3 Let \(\Sigma_c\) be the signature \(\{ \land, \lor, \to, \sim \}\) (recall Definition 2.1.3). Let \(\text{CPL}\) be the Hilbert calculus for Classical Propositional Logic which is defined over the language \(L_{\Sigma_c}\), obtained from the Hilbert calculus for \(\text{CPL}^+\) (see comment after Definition 2.1.13) by adding the following axiom schemas:

\[
\begin{align*}
\alpha \lor \sim \alpha & \quad \text{(TND)} \\
\alpha \to (\sim \alpha \to \beta) & \quad \text{(exp)}
\end{align*}
\]

The consequence relation generated by \(\text{CPL}\) will be denoted by \(\vdash_{\text{CPL}}\). \(\blacksquare\)

Notice that the two axioms above, \((\text{TND})\) and \((\text{exp})\), are tertium non datur and the classical explosion law, both w.r.t. the negation \(\sim\).

It will be useful to consider the expansion of \(\text{CPL}\) to the language generated by the signature \(\Sigma_c^\circ = \Sigma_c \cup \{ \circ \}\), obtained by adding a trivial consistency operator \(\circ\) such that \(\circ \alpha\) is always a top formula:
Definition 2.4.4 Let CPL° be the calculus over Σ_c° obtained by adding to CPL the axiom schema $\circ \alpha$.

It is clear that CPL° is sound and complete w.r.t. the classical 2-valued truth-tables for the connectives in Σ_c displayed below, with the addition of the following truth-table for \circ:

\[
\begin{array}{c|c|c|c}
\land & 0 & 1 & \rightarrow \\
\hline
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\alpha & \sim \alpha & \circ \alpha \\
\hline
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{array}
\]

where 1 is the unique designated truth-value. That is: for every $\Gamma \cup \{\varphi\} \subseteq \mathcal{L}_{\Sigma_c^\circ}$, $\Gamma \vdash_{\text{CPL}^\circ} \varphi$ iff $\Gamma \models_{\text{CPL}^\circ} \varphi$, where $\models_{\text{CPL}^\circ}$ is the semantical consequence relation defined by the logical matrix above (recall the notion of logical matrix in Definition 4.1.2).

Proposition 2.4.5 Let $t : \mathcal{L}_\Sigma \rightarrow \mathcal{L}_{\Sigma_c^\circ}$ be the mapping which replaces \neg by \sim.\(^7\) Then t is a translation from mbC to CPL°. That is: for every $\Gamma \cup \{\varphi\} \subseteq \mathcal{L}_\Sigma$, $\Gamma \vdash_{\text{mbC}} \varphi$ implies $t[\Gamma] \vdash_{\text{CPL}^\circ} t(\varphi)$. The mapping t is not a conservative translation.

Proof It is clear that mbC is sound for the truth-tables above which characterize the logic CPL°, whenever \neg is interpreted by the truth-table for \sim. Indeed, it is enough to see that every instance of an axiom of mbC is a tautology w.r.t. the truth-tables for CPL° when \neg is interpreted as \sim. This means that, for every $\Gamma \cup \{\varphi\} \subseteq \mathcal{L}_\Sigma$, $\Gamma \vdash_{\text{mbC}} \varphi$ implies $t[\Gamma] \vdash_{\text{CPL}^\circ} t(\varphi)$. As CPL° is complete for such semantics, it follows that, for every $\Gamma \cup \{\varphi\} \subseteq \mathcal{L}_\Sigma$, $\Gamma \vdash_{\text{mbC}} \varphi$ implies $t[\Gamma] \vdash_{\text{CPL}^\circ} t(\varphi)$. This shows that t is a translation from mbC to CPL°. The mapping t is not a conservative translation: for instance, if p and q are two distinct propositional variables, then $t(p), t(\neg p) \vdash_{\text{CPL}^\circ} t(q)$ (i.e., $p, \sim p \vdash_{\text{CPL}^\circ} q$) but $p, \neg p \not\vdash_{\text{mbC}} q$.

Recall that Σ_0 denotes the signature $\{\land, \lor, \rightarrow, \neg\}$ (see Definition 2.1.3).

Proposition 2.4.6 Let $t_0 : \mathcal{L}_{\Sigma_0} \rightarrow \mathcal{L}_{\Sigma_c^\circ}$ be the mapping which replaces \neg by \sim.\(^8\) Then t_0 is a translation from the Σ_0-fragment of mbC to CPL. More precisely: for every $\Gamma \cup \{\varphi\} \subseteq \mathcal{L}_{\Sigma_0}$, $\Gamma \vdash_{\text{mbC}} \varphi$ implies $t_0[\Gamma] \vdash_{\text{CPL}} t_0(\varphi)$. The mapping t_0 is not a conservative translation.

Proof Observe that t_0 is the restriction to \mathcal{L}_{Σ_0} of the mapping t of Proposition 2.4.5. Thus, for every $\Gamma \cup \{\varphi\} \subseteq \mathcal{L}_{\Sigma_0}$, $\Gamma \vdash_{\text{mbC}} \varphi$ implies $t_0[\Gamma] \vdash_{\text{CPL}^\circ} t_0(\varphi)$. Combining

\(^7\)In formal terms, t is recursively defined as follows: $t(p) = p$ if $p \in \text{Var}$; $t(\neg \alpha) = \sim t(\alpha)$; $t(\circ \alpha) = ot(\alpha)$; and $t(\alpha \# \beta) = t(\alpha) \# t(\beta)$ if $\# \in \{\land, \lor, \rightarrow\}$.

\(^8\)In formal terms, t_0 is recursively defined as follows: $t_0(p) = p$ if $p \in \text{Var}$; $t_0(\neg \alpha) = \sim t_0(\alpha)$; and $t_0(\alpha \# \beta) = t_0(\alpha) \# t_0(\beta)$ if $\# \in \{\land, \lor, \rightarrow\}$.
this with the clear fact that CPL^o is a conservative extension of CPL it follows that, for every $\Gamma \cup \{ \varphi \} \subseteq \mathcal{L}_{\Sigma_0}$, $\Gamma \vdash_{\text{mbC}} \varphi$ implies $t_0[\Gamma] \vdash_{\text{CPL}} t_0(\varphi)$. Thus, t_0 is a translation. The proof that t_0 is not a conservative translation is identical to the one for t given above, by changing CPL^o by CPL. □

The last result simply shows that the fragment of mbC without \circ is a proper sublogic of CPL (once we interpret \neg as \sim). Moreover, Proposition 2.4.5 shows that the full logic mbC is a proper sublogic of CPL^o, the (inessential) expansion of CPL obtained by adding $\circ \alpha$ as a top formula. Indeed, some interactions valid in CPL between the negation and the other connectives are missing in mbC, for instance the ones described in Propositions 2.3.4(1) and 2.3.5. Of course, the fact that \sim is explosive while \neg is not is the first evidence that the negation \neg of mbC is weaker than the negation \sim of CPL.

However, mbC is not as weak as it seems: actually, CPL can be fully interpreted inside mbC, as we shall see. Moreover, mbC can be regarded as an expansion of CPL obtained by adding a consistency operator \circ and a paraconsistent negation \sim (see Sect. 2.5). In this sense, mbC can be seen both as a subsystem of CPL^o and as a conservative extension of CPL.

There are two natural ways to reproduce CPL inside mbC: one is to consider conservative translations, while the other is to state a Derivability Adjustment Theorem (or DAT) between CPL and mbC as follows:

Theorem 2.4.7 Let $t': \mathcal{L}_{\Sigma} \rightarrow \mathcal{L}_{\Sigma_0}$ be the mapping which replaces \sim with \neg.¹ Then the following holds: for every $\Gamma \cup \{ \varphi \} \subseteq \mathcal{L}_{\Sigma}$,

$$
\Gamma \vdash_{\text{CPL}} \varphi \iff \circ \Delta, t'[\Gamma] \vdash_{\text{mbC}} t'(\varphi) \text{ for some } \Delta \subseteq \mathcal{L}_{\Sigma_0},
$$

where $\circ \Delta = \{ \circ \alpha : \alpha \in \Delta \}$.²

Proof For the ‘only if’ part, suppose that $\Gamma \vdash_{\text{CPL}} \varphi$ and let π be a derivation $\varphi_1 \cdots \varphi_n$ of φ from Γ in CPL. The sequence $t'(\pi)$ provided by $t'(\varphi_1) \ldots t'(\varphi_n)$ is not, in general, a derivation of $t'(\varphi)$ from $t'[\Gamma]$ in mbC because some instances of the explosion law (exp) could occur in π. But the sequence $t'(\pi)$ can be transformed into a derivation in mbC as follows: for each $\varphi_i = \alpha_i \rightarrow (\sim \alpha_i \rightarrow \beta_i)$ occurring in π as an instance of axiom (exp) (not occurring, therefore, as an hypothesis or as the consequence of an application of MP), replace the formula $t'(\varphi_i) = t'(\alpha_i) \rightarrow (\sim t'(\alpha_i) \rightarrow t'(\beta_i)) \in t'(\pi)$ by the following sequence: $\alpha'(\alpha_i)(\alpha'(\alpha_i) \rightarrow t'(\varphi_i))t'(\varphi_i)$. Observe that the latter sequence is a derivation of $t'(\varphi_i)$ from $\{ \alpha'(\alpha_i) \}$ in mbC, as $\alpha'(\alpha_i) \rightarrow t'(\varphi_i)$ is an instance of axiom (bc1). After completing this procedure, a new sequence π' of formulas will be obtained from $t'(\pi)$. Let $\Delta \subseteq \mathcal{L}_{\Sigma_0}$ be the set of all the formulas $t'(\alpha_i)$ used in the procedure described above. In this way, π' is clearly a derivation in mbC of $t'(\varphi)$ from $\circ \Delta \cup t'[\Gamma]$, and consequently $\circ \Delta, t'[\Gamma] \vdash_{\text{mbC}} t'(\varphi)$.

¹In formal terms, t' is defined recursively as follows: $t'(p) = p$ if $p \in \text{Var}$; $t'(\sim \alpha) = \neg t'(\alpha)$; and $t'(\alpha \# \beta) = t'(\alpha) \# t'(\beta)$ if $\# \in \{ \lor, \land, \rightarrow \}$.

²Notice that the mapping t' is necessary only because we consider different signatures for mbC and CPL.
For the ‘if’ part, suppose that $\Delta, t'[\Gamma] \models_{mbC} t'(\phi)$ for some $\Delta \subseteq L_{\Sigma_0}$. By Proposition 2.4.5 and the soundness of CPL^o w.r.t. its truth-tables, it follows that $\Delta[t], \Gamma \models_{CPL} \phi$, given that $t(t'(\beta)) = \beta$ for every $\beta \in L_{\Sigma_1}$. However, every formula in $\Delta[t]$ is a tautology in CPL^o. So, $\Gamma \models_{CPL} \phi$, by definition of the semantics of CPL^o. Given the completeness of CPL w.r.t. its truth-tables, $\Gamma \models_{CPL} \phi$.

By employing a conservative translation, another form to reproduce CPL inside mbC can be obtained. Before defining the translation mapping, it is necessary to observe that, as a consequence of axiom (bc1), a bottom formula $\bot \beta$ is always definable in mbC from a given formula β as $\bot \beta \overset{\text{def}}{=} \beta \land (\neg \beta \land \circ \beta)$:

\[
\begin{array}{c|c|c|c|c}
\beta & \neg \beta & \circ \beta & \bot \\
1 & 1 & 0 & 0 & v_1 \\
0 & 1 & 0 & 0 & v_2 \\
0 & 0 & 0 & 0 & v_3 \\
0 & 1 & 0 & 0 & v_4 \\
0 & 0 & 0 & 0 & v_5 \\
\end{array}
\]

which is represented here in a more compact and natural way:

\[
\begin{array}{c|c|c|c|c}
\beta & \bot \\
1 & 1 \\
0 & 0 \\
\end{array}
\]

Now, by combining $\bot \beta$ with the implication connective \rightarrow (as is done for instance, in intuitionistic logic or even in classical logic, see Sect. 2.5), a new unary operator (namely, a negation) can be defined as follows. Let $\beta(p)$ be a formula which depends exclusively on the propositional variable p, and let $\sim_{\beta(p)}$ be the unary operator defined as follows: $\sim_{\beta(p)} p \overset{\text{def}}{=} p \rightarrow \bot_{\beta(p)}$. By substitution, it is clear that $\sim_{\beta(p)} \alpha = \alpha \rightarrow \bot_{\beta(p)}$, for every formula α. To simplify the notation, we will write \bot_{β} and $\sim_{\beta} \alpha$ instead of $\bot_{\beta(p)}$ and $\sim_{\beta(p)} \alpha$, respectively, for every formula α. Observe that the new operator produces the following table:

\[
\begin{array}{c|c|c|c|c}
\alpha & \beta & \bot & \sim_{\beta} \alpha \\
1 & 1 & 0 & 0 & v_1 \\
1 & 0 & 0 & 0 & v_2 \\
0 & 1 & 0 & 1 & v_3 \\
0 & 0 & 0 & 1 & v_4 \\
\end{array}
\]
or, in a more compact way,

\[
\begin{array}{c|c}
\alpha & \sim_\beta \alpha \\
1 & 0 \\
0 & 1 \\
\end{array}
\]

Observe that \(\sim_\beta\) satisfies the basic properties of a Boolean negation:

\[
\begin{array}{c|c|c|c}
\alpha & \sim_\beta \alpha & \alpha \land \sim_\beta \alpha & \alpha \lor \sim_\beta \alpha \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
\end{array}
\]

and \(\alpha\) is semantically equivalent to \(\sim_\beta \sim_\beta \alpha\) (observe the abuse of notation in the last formula: indeed, it should be written as \(\sim_\beta (\sim_\beta \alpha)\)). Because of these properties, the operator \(\sim_\beta\) defined in \(\text{mbC}\) as above for every formula \(\beta(p)\), is called a strong negation. In order to simplify the notation a bit more, from now on (and when there is no risk of confusion), we will write \(\bot\) and \(\sim\) instead of \(\bot_\beta\) and \(\sim_\beta\), respectively.

The bottom \(\bot\) and the strong negation \(\sim\) satisfy the following properties:

Proposition 2.4.8 The following holds in \(\text{mbC}\), for every \(\Gamma \cup \{\varphi\} \subseteq L_\Sigma\):

(i) \(\bot \vdash_{\text{mbC}} \varphi\).

(ii) If \(\Gamma, \varphi \vdash_{\text{mbC}} \bot\) then \(\Gamma \vdash_{\text{mbC}} \neg \varphi\).

(iii) \(\sim \varphi \vdash_{\text{mbC}} \neg \varphi\), and so \(\vdash_{\text{mbC}} \sim \varphi \rightarrow \neg \varphi\).

Proof (i) It is a consequence of the definition of \(\bot\) and axiom (bc1).

(ii) Assume that \(\Gamma, \varphi \vdash_{\text{mbC}} \bot\). By item (i), \(\bot \vdash_{\text{mbC}} \neg \varphi\) and then \(\Gamma, \varphi \vdash_{\text{mbC}} \neg \varphi\). Since is always the case that \(\Gamma, \neg \varphi \vdash_{\text{mbC}} \neg \varphi\), it follows that \(\Gamma \vdash_{\text{mbC}} \neg \varphi\), by Proposition 2.1.14(iii).

(iii) By definition of \(\sim\) and by MP, \(\sim \varphi, \varphi \vdash_{\text{mbC}} \bot\). Then \(\sim \varphi \vdash_{\text{mbC}} \neg \varphi\), by item (ii). Finally, \(\vdash_{\text{mbC}} \sim \varphi \rightarrow \neg \varphi\) by DMT. \(\square\)

More properties of the strong negation will be proved in Chap. 7, Proposition 7.2.2.

As was done in da Costa’s logic \(C_1\), another negation operator in \(\text{mbC}\) could be defined as follows: \(\ominus \alpha \overset{d}{=} \neg \alpha \land \alpha\). Despite \(\ominus\) being explosive, it does not behave exactly as expected, as tertium non datur is not satisfied (see valuation \(v_5\) below):

\[
\begin{array}{c|c|c|c|c|c}
\alpha & \neg \alpha & \ominus \alpha & \alpha \land \ominus \alpha & \alpha \lor \ominus \alpha \\
1 & 0 & 0 & 0 & 1 & v_1 \\
0 & 1 & 0 & 0 & 1 & v_2 \\
0 & 0 & 0 & 1 & v_3 \\
0 & 1 & 1 & 0 & 1 & v_4 \\
0 & 0 & 0 & 0 & 0 & v_5 \\
\end{array}
\]
Additionally, \ominus does not satisfy the law of double negation: take an mbC-valuation v such that $v(p) = 1$ for a given propositional variable. From this, it follows that $v(\ominus p) = 0$ and so $v(\neg p) = 1$. Suppose that $v(\ominus\ominus p) = 0$. Then $v(\ominus\ominus p) = 0$, showing that $\not\vDash_{\text{mbC}} (p \rightarrow \ominus\ominus p)$. Now, consider an mbC-valuation v' such that $v'(p) = 0$, $v'((\ominus p)) = 0$ (and so $v'(\neg p) = 1$), and $v'(\ominus\ominus p) = 1$. From this, $v'(\ominus\ominus p) = 1$ and therefore $\not\vDash_{\text{mbC}} (\ominus\ominus p \rightarrow p)$.

It is possible to correct all the failures of the operator \ominus by requiring the following additional property to the valuations:

$$v(\alpha) = 0 \implies v(\circ\alpha) = 1.$$

It is easy to prove that this strategy corresponds to adding to mbC the following axiom schema:

$$\alpha \lor \circ\alpha.$$

The following proposition shows that tertium non datur is indeed equivalent to the law above, and it shows also that the law of double negation will be automatically satisfied by the alternative negation \ominus:

Proposition 2.4.9 Let \mathcal{L} be an extension of mbC.

(i) $\vDash_{\mathcal{L}} \alpha \lor \ominus\alpha$ iff $\vDash_{\mathcal{L}} \alpha \lor \circ\alpha$.

(ii) If $\vDash_{\mathcal{L}} \alpha \lor \ominus\alpha$ then $\vDash_{\mathcal{L}} \alpha \rightarrow \ominus\ominus\alpha$ and $\vDash_{\mathcal{L}} \ominus\ominus\alpha \rightarrow \alpha$.

Proof (i) Observe that $\alpha \lor \ominus\alpha = \alpha \lor (\neg\alpha \land \circ\alpha)$ is equivalent to $(\alpha \lor \neg\alpha) \land (\alpha \lor \circ\alpha)$ (by distributivity), which is in turn equivalent to $\alpha \lor \circ\alpha$ (given that $\alpha \lor \neg\alpha$ is a theorem of \mathcal{L}). This proves the result.

(ii) As observed above, an extension \mathcal{L} proving the theorem $\alpha \lor \ominus\alpha$, is characterized by mbC-valuations which must satisfy: for every α, if $v(\alpha) = 0$ then $v(\circ\alpha) = 1$. It is easy to see, then, that the unique counterexamples of the law of double negation in both directions (see comment above) are now forbidden, as α is now logically equivalent to $\ominus\ominus\alpha$ in \mathcal{L}. □

This point will be resumed in Sect. 3.

Now, profiting from the strong negation $\sim\beta$ definable in mbC (as discussed above), we show that the mapping that replaces the classical negation \neg, with the defined operator $\sim\beta$, is a conservative translation from CPL to mbC. This constitutes an alternative way to recover classical logic inside mbC.

Proposition 2.4.10 Fix a given formula $\beta(p_1) \in \mathcal{L}_\Sigma$ which depends exclusively on the propositional variable p_1 (for instance, $\beta = p_1$). The mapping $\circ : \mathcal{L}_\Sigma \rightarrow \mathcal{L}_\Sigma$ is recursively defined as follows:

$$p^\circ = p, \text{ if } p \in \text{Var};$$

$$(\sim\alpha)^\circ \equiv \sim\beta(\alpha^\circ);$$

$$(\alpha \# \beta)^\circ \equiv \alpha^\circ \# \beta^\circ \text{ if } \# \in \{\lor, \land, \rightarrow\}.$$
In this way \(\circ \) is a conservative translation from CPL to mbC. That is: for every \(\Gamma \cup \{ \varphi \} \subseteq \mathcal{L}_{\Sigma} \),

\[
\Gamma \vdash_{\text{CPL}} \varphi \iff \Gamma \circ \vdash_{\text{mbC}} \varphi ^{\circ}.
\]

Proof By Theorem 2.4.2, it suffices to prove that \(\vdash_{\text{CPL}} \varphi \iff \vdash_{\text{mbC}} \varphi ^{\circ} \), for every formula \(\varphi \in \mathcal{L}_{\Sigma} \).

For the ‘only if’ part, recall that CPL is obtained from CPL\(^+\) by adding axiom schemas (TND) and (exp). As mbC is an extension of CPL\(^+\), and the translation of all the instances of axiom schemas and rules of CPL\(^+\) produces instances of axiom schemas and rules of CPL\(^+\) (and so of mbC), the only cases to be analyzed are the two axiom schemas (TND) and (exp). Thus, let \(\varphi \lor \neg \varphi \) and \(\varphi \rightarrow (\neg \varphi \rightarrow \psi) \) be instances of (TND) and (exp), respectively. They are translated by \(\circ \) as the formulas \(\varphi \circ \lor \neg \beta(\varphi \circ) \) and \(\varphi \circ \rightarrow (\neg \beta(\varphi \circ) \rightarrow \psi \circ) \), respectively. But, as observed above, \(\alpha \lor \neg \alpha \) is always true and \(\alpha \land \neg \alpha \) is always false for the mbC-valuations, for every \(\alpha \). Being so, \(\varphi \circ \lor \neg \beta(\varphi \circ) \) and \(\varphi \circ \rightarrow (\neg \beta(\varphi \circ) \rightarrow \psi \circ) \) are always true for mbC-valuations. Thus, they are derivable in mbC, by completeness. This shows that if \(\vdash_{\text{CPL}} \varphi \) then \(\vdash_{\text{mbC}} \varphi ^{\circ} \).

For the ‘if’ part, suppose that \(\vdash_{\text{mbC}} \varphi ^{\circ} \). By Proposition 2.4.5 it follows that \(\vdash_{\text{CPL}} t(\varphi ^{\circ}) \). However, in CPL\(^\circ\), the formula \(t(\neg \alpha) \) is equivalent to \(\neg t(\alpha) \), for every \(\alpha \). As a consequence, it is easy to prove by induction on the complexity of \(\varphi \) that \(t(\varphi ^{\circ}) \) is equivalent to \(\varphi \) in CPL\(^\circ\). Hence \(\vdash_{\text{CPL}} \varphi \) and so, by the fact that CPL\(^\circ\) is a conservative extension of CPL, it follows that \(\vdash_{\text{CPL}} \varphi \), which completes the proof. \(\square \)

2.5 Reintroducing mbC as an Expansion of CPL

The results of the previous section, in particular Proposition 2.4.10, suggest that a different language based on the signature \(\Sigma_{\perp} = \{ \perp, \rightarrow, \neg, \circ \} \) could be used for mbC (recall Definition 2.1.3). This is the proposal found in [6], on which this section is based.

The notion of complexity of a formula in \(\mathcal{L}_{\Sigma_{\perp}} \) is defined analogously to Definition 2.1.11:

Definition 2.5.1 (Formula Complexity in \(\mathcal{L}_{\Sigma_{\perp}} \)) The complexity of a given formula \(\varphi \in \mathcal{L}_{\Sigma_{\perp}} \), denoted by \(l(\varphi) \), is recursively defined as follows:

1. If \(\varphi = p \), where \(p \in \text{Var} \cup \{ \perp \} \), then \(l(\varphi) = 1 \);
2. If \(\varphi = \neg \alpha \), then \(l(\varphi) = l(\alpha) + 1 \);
3. If \(\varphi = \circ \alpha \), then \(l(\varphi) = l(\alpha) + 2 \);
4. If \(\varphi = \alpha \rightarrow \beta \), then \(l(\varphi) = l(\alpha) + l(\beta) + 1 \).

As observed in the previous section, any formula \(\beta \) defines a bottom constant in mbC as follows: \(\perp_{\beta} \overset{df}{=} \beta \land (\neg \beta \land \circ \beta) \) and then CPL can be recovered within
mbC by means of a conservative translation (see Proposition 2.4.10). This suggests that it is possible to consider from the start a 0-ary connective \(\perp \) and the axiom schemas for CPL in the signature \(\Sigma_\perp \), as well as the corresponding axiom schemas for the paraconsistent negation \(\neg \) and the consistency operator \(\circ \), to obtain a new axiomatization of mbC in the signature \(\Sigma_\perp \).

Besides the simplification it achieves (for instance, when doing proofs by induction on the complexity of a formula), a justification for the use of this new language is that \(\perp \), being so important in the context of LFI systems, is usually defined with respect to a formula \(\beta(\alpha) \) as \(\perp_{\beta(\alpha)} \), and so there is an infinitude of such bottom formulas. The same observation applies to the classical negation (\(\neg \)), which is defined as \(\neg_{\beta(\alpha)} \equiv \alpha \rightarrow \perp_{\beta(\alpha)} \), and so there are infinitely many classical negations inside mbC, with the index \(\beta(\alpha) \) varying with \(\alpha \). For that reason, the inclusion of bottom \(\perp \) to the signature allows to define a distinguished classical negation as expected:

Definition 2.5.2 (Classical Negation in \(L_{\Sigma_\perp} \)) Let \(p \) be a propositional variable. The classical negation is defined in signature \(\Sigma_\perp \) by means of the following formula:

\[
\sim p \equiv p \rightarrow \perp.
\]

Hence, if \(\alpha \) is any formula in \(L_{\Sigma_\perp} \) then \(\sim \alpha \equiv \alpha \rightarrow \perp \), by substitution. This constitutes a significant simplification with respect to the signature \(\Sigma \), where the index of the negation varies with the formula being negated. From this, \(\perp \) and \(\sim \) can be considered the canonical choices for bottom and the classical negation inside mbC. Moreover, the new presentation of mbC in this signature is equivalent to consider this logic as an expansion of classical propositional logic CPL (this time defined in the signature \(\{\rightarrow, \perp\} \)) by adding a paraconsistent negation and a consistency operator. This allows mbC to be seen as a kind of bimodal logic based on CPL.

2.5.1 The New Presentation mbC\(^\perp\) of mbC

Definition 2.5.3 (mbC\(^\perp\)) The calculus mbC\(^\perp\) is defined over the language \(L_{\Sigma_\perp} \) by the following Hilbert calculus:

Axiom schemas:

\[
\begin{align*}
\alpha \rightarrow (\beta \rightarrow \gamma) & \quad (\text{Ax1}) \\
(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) & \quad (\text{Ax2}) \\
\sim\sim \alpha & \rightarrow \alpha \quad (\sim\sim) \\
\sim \alpha & \rightarrow \neg \alpha \quad (\sim \neg) \\
\circ \alpha & \rightarrow (\neg \alpha \rightarrow \sim \alpha) \quad (\text{bc1}\perp)
\end{align*}
\]
Inference rule:

\[
\begin{array}{c}
\alpha \\
\alpha \rightarrow \beta \\
\hline \\
\beta
\end{array}
\]
(MP)

As was argued for \textbf{mbC} in Proposition 2.1.14, the calculus \textbf{mbC}_\bot satisfies the Deduction meta-theorem DMT:

\textbf{Theorem 2.5.4} (Deduction meta-theorem) For every \(\Gamma \cup \{ \varphi, \psi \} \subseteq \mathcal{L}_{\Sigma_\bot} \):

\[\Gamma \cup \{ \varphi \} \vdash_{\text{mbC}_\bot} \psi \iff \Gamma \vdash_{\text{mbC}_\bot} \varphi \rightarrow \psi. \]

The following result is well-known in the literature. See a proof, for instance, in Chap. 1 of Church’s book [22] (where the system \textbf{CPL}_{W} below is called \textbf{P}_{1}).

\textbf{Proposition 2.5.5} Let \(\Sigma_{W} \) be the signature \(\{ \rightarrow, \bot \} \). Consider the logic \textbf{CPL}_{W} given by the Hilbert calculus over the signature \(\Sigma_{W} \) which is formed by the axiom schemas (Ax1), (Ax2) and \((\sim\sim) \) plus the rule (MP). In this way \textbf{CPL}_{W} constitutes a sound and complete axiomatization of \textbf{CPL} in the signature \(\Sigma_{W} \) (by taking \(\sim \) as in Definition 2.5.2).

\textbf{Remark 2.5.6} The axiomatization \textbf{CPL}_{W} of \textbf{CPL} in the signature \(\{ \rightarrow, \bot \} \) was firstly proposed in 1939 by Wajsberg (see [23]).

The next technical lemma is required for establishing the completeness theorem in the following section.

\textbf{Lemma 2.5.7} All the following formulas are theorems of \textbf{mbC}_\bot:

1. \(\bot \rightarrow \alpha \)

2. \(((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha \)

3. \((\alpha \rightarrow \gamma) \rightarrow ((\beta \rightarrow \gamma) \rightarrow ((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow \gamma) \)

4. \((\alpha \rightarrow \gamma) \rightarrow ((\beta \rightarrow \gamma) \rightarrow ((\alpha \rightarrow \bot) \rightarrow \beta) \rightarrow \gamma) \)

\textbf{Proof} It follows from the fact that all these formulas are classic tautologies in the signature \(\{ \rightarrow, \bot \} \) and they can therefore be derived in \textbf{mbC}_\bot by Proposition 2.5.5. \(\Box \)

11Not to be confused with Sette’s \textbf{P}_{1}, see Sect. 4.4.4. To be more precise \textbf{P}_{1} contains, besides \textbf{MP}, the inference rule of Uniform Substitution, since the axioms are presented by using propositional variables instead of schema formulas.
2.5 Reintroducing mbC as an Expansion of CPL

2.5.2 Valuation Semantics for mbC

Now a valuation semantic, adapted from that for mbC, will be proposed for mbC⊥.

Definition 2.5.8 (Valuations for mbC⊥) A function \(v : L_{Σ ⊥} \rightarrow \{0, 1\} \) is a valuation for mbC⊥, or an mbC⊥-valuation, if it satisfies the following clauses:

\[
\begin{align*}
(v_{\text{Bot}}) & \quad v(⊥) = 0 \\
(v_{\text{Neg}}) & \quad v(¬α) = 0 \implies v(α) = 1 \\
(v_{\text{Con}}) & \quad v(α ∘ γ) = 1 \implies v(α) = 0 \text{ or } v(¬α) = 0. \\
(v_{\text{Imp}}) & \quad v(α → β) = 1 \iff v(α) = 0 \text{ or } v(β) = 1
\end{align*}
\]

The set of all such valuations will be designated by \(V^{\text{mbC}⊥} \).

A technical result is given below, whose demonstration will be used latter on, more specifically in the proof of Theorem 2.5.20.

Lemma 2.5.9 Let \(v_0 : \text{Var} \rightarrow \{0, 1\} \) be a mapping. Then there exists a valuation \(v \in V^{\text{mbC}⊥} \) extending \(v_0 \).

Proof For \(ψ \in L_{Σ ⊥} \), the truth-values of \(v(ψ) \) are defined by induction on \(l(ψ) \). To begin, if \(ψ \) is such that \(l(ψ) = 1 \), then either \(ψ \in \text{Var} \) or \(ψ = ⊥ \). In the first case, the valuation is defined as \(v(ψ) = v_0(ψ) \). In the second case, we define \(v(ψ) = 0 \).

Now, suppose that the valuation \(v \) is already defined for all \(ψ' \) such that \(l(ψ') < n \), where \(n > 1 \) (induction hypothesis), and let \(ψ \) such that \(l(ψ) = n \). According to the main connective of \(ψ \), the definition goes as follows:

1. If \(ψ = α → β \), then:

\[
v(α → β) = 1 \iff v(α) = 0 \text{ or } v(β) = 1
\]

2. If \(ψ = ¬γ \), then:

\[
v(¬γ) = \begin{cases}
1 & \text{if } v(γ) = 0, \text{ or} \\
\text{arbitrary} & \text{otherwise}
\end{cases}
\]

3. If \(ψ = ◦ γ \), then:

\[
v(◦ γ) = \begin{cases}
0 & \text{if } v(γ) = v(¬γ) = 1, \text{ or} \\
\text{arbitrary} & \text{otherwise}
\end{cases}
\]

It is worth noting that \(v \) is well-defined, by Definition 2.5.1 of complexity. Clearly, \(v \) is an mbC⊥-valuation extending \(v_0 \). The easy details are left to the reader. □
Remark 2.5.10 The reader should notice that, different to the case of valuations over logical matrices, which are homomorphisms between algebras (see Sect. 4.1 in Chap. 4), any mapping \(v_0 : \text{Var} \rightarrow \{0, 1\} \) can be extended to more than one \(\text{mbC}^\perp \)-valuation (in fact, there are infinite \(\text{mbC}^\perp \)-valuations extending \(v_0 \)). This is a consequence of the non-determinism inherent to valuations of this kind, in contrast with the determinism imposed by homomorphic valuations. The question of non-determinism versus determinism in the context of semantic approaches to LFI\(s \) will be analyzed with more details in Chap. 6.

Now we will prove that the new logic \(\text{mbC}^\perp \) is sound and complete for its semantics of valuations.

Theorem 2.5.11 (Soundness for \(\text{mbC}^\perp \)) For every \(\Gamma \cup \{ \varphi \} \subseteq \mathcal{L}_{\Sigma_\perp} \):

\[
\Gamma \vdash_{\text{mbC}^\perp} \varphi \quad \implies \quad \Gamma \models_{\text{mbC}^\perp} \varphi.
\]

Proof The proof of this theorem is entirely analogous than that of Theorem 2.2.2 for \(\text{mbC} \). The only axioms to be analyzed are the new ones. Firstly observe that, for every \(\text{mbC}^\perp \)-valuation \(v \) and for every formula \(\alpha \), \(v(\neg \alpha) = 1 \) iff \(v(\alpha) = 0 \). Hence, axiom \((\neg \neg) \) is clearly valid. Let \(\gamma = \neg \neg \alpha \rightarrow \neg \alpha \) be an instance of axiom \((\neg \neg) \), and let \(v \) be an \(\text{mbC}^\perp \)-valuation. If \(v(\neg \alpha) = 0 \) then \(v(\gamma) = 1 \), by \((v\text{Imp}) \). Otherwise, if \(v(\neg \alpha) = 0 \) then \(v(\alpha) = 0 \) and so \(v(\neg \alpha) = 1 \), by clause \((v\text{Neg}) \). From this, \(v(\gamma) = 1 \) by \((v\text{Imp}) \). Finally, let \(\delta \) be an instance \(\neg \alpha \rightarrow (\neg \alpha \rightarrow \neg \alpha) \) of axiom \((\text{bc}1\perp) \), and let \(v \) be an \(\text{mbC}^\perp \)-valuation. If \(v(\neg \alpha) = 0 \) then \(v(\delta) = 1 \), by clause \((v\text{Imp}) \). Otherwise, if \(v(\neg \alpha) = 1 \) then either \(v(\alpha) = 0 \) or \(v(\neg \alpha) = 0 \), by \((v\text{Con}) \). If \(v(\alpha) = 0 \) then \(v(\neg \alpha) = v(\neg \alpha) = 1 \) and so \(v(\neg \alpha \rightarrow \neg \alpha) = 1 \). If \(v(\neg \alpha) = 0 \) then clearly \(v(\neg \alpha \rightarrow \neg \alpha) = 1 \) too. In both cases \(v(\delta) = 1 \).

The proof of completeness will be also analogous to that of \(\text{mbC} \).

Theorem 2.5.12 Let \(\Gamma \cup \{ \varphi \} \subseteq \mathcal{L}_{\Sigma_\perp} \), with \(\Gamma \) maximal non-trivial with respect to \(\varphi \) in \(\text{mbC}^\perp \) (recall Definition 2.2.3). The mapping \(v : \mathcal{L}_{\Sigma_\perp} \rightarrow \{0, 1\} \) defined by:

\[
v(\psi) = 1 \iff \psi \in \Gamma
\]

for all \(\psi \in \mathcal{L}_{\Sigma_\perp} \) is a valuation for \(\text{mbC}^\perp \).

Proof Let \(\psi \in \mathcal{L}_{\Sigma_\perp} \) be an arbitrary formula.

1. \(\psi = \perp \). Suppose, by contradiction, that \(\perp \in \Gamma \). As \(\vdash_{\text{mbC}^\perp} \perp \rightarrow \varphi \) (by Lemma 2.5.7(1)) then \(\perp \rightarrow \varphi \in \Gamma \), by Lemma 2.2.5. By \(\text{MP} \), and using Lemma 2.2.5 again, it follows that \(\varphi \in \Gamma \), which is a contradiction. Therefore \(\perp \notin \Gamma \) and so \(v(\perp) = 0 \).

2. \(\psi = \neg \alpha \). Suppose \(\neg \alpha \notin \Gamma \) and, by contradiction, also \(\alpha \notin \Gamma \). As \(\Gamma \) is maximal, it follows that \(\neg \alpha \vdash_{\text{mbC}^\perp} \varphi \) and \(\Gamma, \alpha \vdash_{\text{mbC}^\perp} \varphi \). By the deduction meta-theorem, \(\Gamma \vdash_{\text{mbC}^\perp} \alpha \rightarrow \varphi \) and \(\Gamma \vdash_{\text{mbC}^\perp} \neg \alpha \rightarrow \varphi \). Now, by Lemma 2.5.7(4), \(\Gamma \vdash_{\text{mbC}^\perp} ((\alpha \rightarrow \perp) \rightarrow \neg \alpha) \rightarrow \varphi \). However, \((\alpha \rightarrow \perp) \rightarrow \neg \alpha \) is an instance of Axiom \((\neg \neg) \), and then (by \(\text{MP} \)) \(\Gamma \vdash_{\text{mbC}^\perp} \varphi \), which is a contradiction. Therefore:
3. $\psi = \circ \alpha$. Suppose $\circ \alpha \in \Gamma$ and, by contradiction, that both $\alpha \in \Gamma$ and $\neg \alpha \in \Gamma$. Then, by Axiom (bc1^\bot) and Lemma 2.2.5, $\neg \alpha \in \Gamma$. By the definition of \neg and by MP, it follows that $\bot \in \Gamma$. But then, as a consequence of Lemma 2.5.7(1), it can be inferred that $\varphi \in \Gamma$, which is a contradiction. Therefore, either $\alpha \notin \Gamma$ or $\neg \alpha \notin \Gamma$. That is:

$$v(\circ \alpha) = 1 \implies v(\alpha) = 0 \text{ or } v(\neg \alpha) = 0.$$

4. $\psi = \alpha \rightarrow \beta$. Suppose $\alpha \rightarrow \beta \in \Gamma$. If $\alpha \in \Gamma$ then $\beta \in \Gamma$ by MP and Lemma 2.2.5. Therefore:

$$v(\alpha \rightarrow \beta) = 1 \implies v(\alpha) = 0 \text{ or } v(\beta) = 1.$$

Now, suppose $\alpha \notin \Gamma$ or $\beta \in \Gamma$. If $\beta \in \Gamma$ then $\alpha \rightarrow \beta \in \Gamma$ by Axiom (Ax1), MP and Lemma 2.2.5. If $\alpha \notin \Gamma$ then, by the maximality of Γ, it follows that $\Gamma, \alpha \vdash_{mbC^\bot} \varphi$. Now, suppose by contradiction that $\alpha \rightarrow \beta \notin \Gamma$. Then $\Gamma, \alpha \rightarrow \beta \vdash_{mbC^\bot} \varphi$. By the deduction meta-theorem, both $\Gamma \vdash_{mbC^\bot} (\alpha \rightarrow \beta) \rightarrow \varphi$ and $\Gamma \vdash_{mbC^\bot} \alpha \rightarrow \varphi$. By Lemma 2.5.7(3), $\Gamma \vdash_{mbC^\bot} \left(((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha \right) \rightarrow \varphi$ and, by item 2 of that lemma, $\Gamma \vdash_{mbC^\bot} \varphi$, which is a contradiction. Therefore:

$$v(\alpha) = 0 \text{ or } v(\beta) = 1 \implies v(\alpha \rightarrow \beta) = 1.$$

2.5.3 Equivalence Between mbC and mbC$^\bot$

In this section, mbC$^\bot$ will be shown to be equivalent to its counterpart mbC. By induction on the formula complexity, two mappings will now be defined which later on will be shown to be conservative translations.
Definition 2.5.14 Fix an arbitrary propositional variable in Var, for instance p_1. The mapping $\circledast : \mathcal{L}_{\Sigma_{\perp}} \to \mathcal{L}_{\Sigma}$ is defined inductively for all $\varphi \in \mathcal{L}_{\Sigma_{\perp}}$ as follows:

\[
\begin{align*}
q^{\circledast} &= q, \quad \text{if } q \in Var; \\
\perp^{\circledast} &= p_1 \land (\neg p_1 \land \circ p_1); \\
(\# \alpha)^{\circledast} &= \#(\alpha^{\circledast}) \quad \text{for } \# \in \{\neg, \circ\}; \\
(\alpha \to \beta)^{\circledast} &= \alpha^{\circledast} \to \beta^{\circledast}.
\end{align*}
\]

\[\blacksquare\]

Definition 2.5.15 The mapping $\ast : \mathcal{L}_{\Sigma} \to \mathcal{L}_{\Sigma_{\perp}}$ is defined by induction on $l(\varphi)$, for all $\varphi \in \mathcal{L}_{\Sigma}$ as follows:

\[
\begin{align*}
q^{\ast} &= q, \quad \text{if } q \in Var; \\
(\# \alpha)^{\ast} &= \#(\alpha^{\ast}) \quad \text{for } \# \in \{\neg, \circ\}; \\
(\alpha \to \beta)^{\ast} &= \alpha^{\ast} \to \beta^{\ast}; \\
(\alpha \lor \beta)^{\ast} &= (\alpha^{\ast} \to \perp) \to \beta^{\ast}; \\
(\alpha \land \beta)^{\ast} &= (\alpha^{\ast} \to (\beta^{\ast} \to \perp)) \to \perp.
\end{align*}
\]

\[\blacksquare\]

The injectivity of these mappings needs to be established, in order to be possible to properly define the valuations of Theorem 2.5.20. But, first, an intermediary result shall be given:

Lemma 2.5.16 There are no formulas $\varphi, \psi \in \mathcal{L}_{\Sigma}$ which satisfy the following equation:

\[
\varphi^{\ast} \to \perp = \psi^{\ast}
\]

Proof Suppose, by contradiction, there is a solution in \mathcal{L}_{Σ} for the above identity and let φ and ψ be such a solution with a minimum value of $l(\varphi) + l(\psi)$. Observe now that \perp is not in the image of \ast, and so $\psi \neq \alpha \to \beta$ and $\psi \neq \alpha \lor \beta$ for any of these would imply $\beta^{\ast} = \perp$. Therefore, the only way to get the image of ψ to be $\varphi^{\ast} \to \perp$ is with $\psi = \psi_1 \land \psi_2$. Therefore $\varphi^{\ast} \to \perp = (\psi_1^{\ast} \to (\psi_2^{\ast} \to \perp)) \to \perp$, and so $\varphi^{\ast} = \psi_1^{\ast} \to (\psi_2^{\ast} \to \perp)$.

There are two cases to be analyzed:

1. $\varphi = \varphi_1 \lor \varphi_2$. Therefore $\varphi^{\ast} = \varphi_1^{\ast} \to \varphi_2^{\ast}$, $\varphi_1^{\ast} = \psi_1^{\ast}$ and $\varphi_2^{\ast} = \psi_2^{\ast} \to \perp$.
2. $\varphi = \varphi_1 \to \varphi_2$. Therefore $\varphi^{\ast} = (\varphi_1^{\ast} \to \perp) \to \varphi_2^{\ast}$, $\varphi_1^{\ast} \to \perp = \psi_1^{\ast}$ and $\varphi_2^{\ast} = \psi_2^{\ast} \to \perp$.

In both cases (ψ_2, φ_2) is a solution to the equation in question with $l(\psi_2) + l(\varphi_2) < l(\varphi) + l(\psi)$, a contradiction. \[\blacksquare\]

Theorem 2.5.17 The mappings $\circledast : \mathcal{L}_{\Sigma_{\perp}} \to \mathcal{L}_{\Sigma}$ and $\ast : \mathcal{L}_{\Sigma} \to \mathcal{L}_{\Sigma_{\perp}}$ from Definitions 2.5.14 and 2.5.15 are injective.
2.5 Reintroducing mbC as an Expansion of CPL

Proof Let \(\varphi, \psi \in L_{\Sigma} \) be such that \(\varphi^\circ = \psi^\circ \). By induction on \(l(\varphi) + l(\psi) \) it is easy to prove that \(\varphi = \psi \). This is a consequence of the fact that, by Definition 2.5.14, there are not two different equations having, to the right, formulas with the same main connective.

Now, let \(\varphi, \psi \in L_{\Sigma} \) be such that \(\varphi^* = \psi^* \). The proof is given by induction, analogous to \(^\circ \). However, the induction step for which the main connective of both sides of the above equation is \(\rightarrow \) proves to be a bit more complicated. In fact, there are three equations in Definition 2.5.15 having, to the right, a formula with \(\varphi \) the main connective. So, let \(\varphi^* = \alpha' \rightarrow \beta' = \psi^* \). Hence, there are the following possibilities:

(a) \(\varphi = \alpha \rightarrow \beta \) and \(\psi = \gamma \rightarrow \delta \). Therefore, \(\varphi^* = \alpha^* \rightarrow \beta^* = \gamma^* \rightarrow \delta^* = \psi^* \). By unique readability, it follows that \(\alpha^* = \gamma^* \) and \(\beta^* = \delta^* \). The result is then obtained by the induction hypothesis: \(\alpha = \gamma \) and \(\beta = \delta \), which implies \(\varphi = \psi \).

(b) \(\varphi = \alpha \rightarrow \beta \) and \(\psi = \gamma \lor \delta \). Therefore, \(\varphi^* = \alpha^* \rightarrow \beta^* = (\gamma^* \rightarrow \bot) \rightarrow \delta^* = \psi^* \). By unique readability, \(\alpha^* = \gamma^* \rightarrow \bot \), which is impossible by Lemma 2.5.16.

(c) \(\varphi = \alpha \rightarrow \beta \) and \(\psi = \gamma \land \delta \). This is impossible, for it would imply \(\beta^* = \bot \).

(d) \(\varphi = \alpha \lor \beta \) and \(\psi = \gamma \lor \delta \). Then, as in item (a), \(\alpha = \gamma \) and \(\beta = \delta \), given the fact that \(\alpha^* \rightarrow \bot \rightarrow \gamma^* \rightarrow \bot \) and \(\beta^* = \delta^* \). Then \(\varphi = \psi \).

(e) \(\varphi = \alpha \lor \beta \) and \(\psi = \gamma \land \delta \). This is impossible, for it would imply \(\beta^* = \bot \).

(f) \(\varphi = \alpha \land \beta \) and \(\psi = \gamma \land \delta \). Then \(\alpha^* \rightarrow (\beta^* \rightarrow \bot) = \gamma^* \rightarrow (\delta^* \rightarrow \bot) \), which implies \(\alpha = \gamma \) and \(\beta = \delta \). Therefore \(\varphi = \psi \).

\(\square \)

Corollary 2.5.18

1. Let \(\varphi = \#\gamma \in L_{\Sigma} \), with \# \in \{\neg, \circ\}. If \(\varphi \in \text{Im}(^\circ) \) \(\{ \psi^*: \psi \in L_{\Sigma} \} \), there exists a unique formula \(\delta \in L_{\Sigma} \) such that \(\varphi = (\#\delta)^\circ \).

2. Let \(\varphi = \#\gamma \in L_{\Sigma} \), with \# \in \{\neg, \circ\}. If \(\varphi \in \text{Im}(^\circ) \) \(\{ \psi^*: \psi \in L_{\Sigma} \} \), there exists a unique formula \(\delta \in L_{\Sigma} \) such that \(\varphi = (\#\delta)^\circ \).

Proof This result is a direct consequence of the injectivity and the very definition of the mappings \(^\circ \) and \(^\circ \).

\(\square \)

Lemma 2.5.19

1. Let \(v \in V_{\text{mbC}} \). Then the mapping \(v': L_{\Sigma} \rightarrow \{0, 1\} \) defined by \(v'(\varphi) \overset{df}{=} v(\varphi^\circ) \) is such that \(v' \in V_{\text{mbC}}^c \).

2. Let \(v \in V_{\text{mbC}} \). Then the mapping \(v': L_{\Sigma} \rightarrow \{0, 1\} \) defined by \(v'(\varphi) \overset{df}{=} v(\varphi^\circ) \) is such that \(v' \in V_{\text{mbC}} \).

Proof 1. Let \(\varphi \in L_{\Sigma} \) be an arbitrary formula. We will prove that \(v' \) satisfies the clauses from Definition 2.5.8.

(a) \(\varphi = \bot \). Then \(\varphi^\circ = p_1 \land (\neg p_1 \land p_1) \) and so \(v(\varphi^\circ) = 0 \) for any valuation for \(\text{mbC} \). Therefore \(v'(\bot) = v(\varphi^\circ) = 0 \).

(b) \(\varphi = \neg \alpha \). Then \(\varphi^\circ = \neg (\alpha^\circ) \). Therefore, if \(v'(\neg \alpha) = 0 \), then \(v(\neg (\alpha^\circ)) = 0 \) (by definition of \(v' \)). Now, as \(v \) is a valuation for \(\text{mbC} \), it follows that \(v(\alpha^\circ) = 1 \), and so \(v'(\alpha) = 1 \).

(c) \(\varphi = \circ \alpha \). Then \(\varphi^\circ = \circ (\alpha^\circ) \). Therefore, if \(v'(\circ \alpha) = 1 \), then \(v(\circ (\alpha^\circ)) = 1 \). Now, as \(v \) is a valuation for \(\text{mbC} \), \(v(\varphi^\circ) = v'(\alpha) = 0 \) or \(v(\neg (\alpha^\circ)) = v'(\neg \alpha) = 0 \).
(d) $\varphi = \alpha \rightarrow \beta$. Then $\varphi^0 = \alpha^0 \rightarrow \beta^0$. Therefore, $v'(\alpha \rightarrow \beta) = 1$ if, and only if, $v(\alpha^0 \rightarrow \beta^0) = 1$. But the last occurs exactly when $v(\alpha^0) = 0$ or $v(\beta^0) = 1$, that is, exactly when $v'(\alpha) = 0$ or $v'(\beta) = 1$.

2. Let $\varphi \in L_\Sigma$ be an arbitrary formula. We will prove that v' is an mbC-valuation. If φ is of the form $\neg \alpha, \alpha \land \beta, \alpha \rightarrow \beta$, the proof is similar to that of item 1 above. Now, for the remaining cases:

(a) $\varphi = \alpha \lor \beta$. Then $\varphi^* = (\alpha^* \rightarrow \bot) \rightarrow \beta^*$ and therefore, $v'(\alpha \lor \beta) = v((\alpha^* \rightarrow \bot) \rightarrow \beta^*)$. Since \rightarrow and \bot are interpreted as in propositional classical logic, it follows that $v'(\alpha \lor \beta) = v(\varphi^*) = 1$ iff $v'(\alpha) = v(\alpha^*) = 1$ or $v'(\beta) = v(\beta^*) = 1$.

(b) $\varphi = \alpha \land \beta$. Then $\varphi^* = (\alpha^* \rightarrow (\beta^* \rightarrow \bot)) \rightarrow \bot$ and therefore, $v'(\alpha \land \beta) = v((\alpha^* \rightarrow (\beta^* \rightarrow \bot)) \rightarrow \bot)$. In line with the argument in the previous item, it follows that $v'(\alpha \land \beta) = v(\varphi^*) = 1$ iff $v'(\alpha) = v(\alpha^*) = 1$ and $v'(\beta) = v(\beta^*) = 1$. □

The next lemma establishes that when there is a model (or counter-model) for a formula φ in mbC^\bot, there also exists a model (or counter-model) for φ^0 in mbC. Similarly, given a model (or counter-model) for a formula φ in mbC, there also exists a model (or counter-model) for φ^* in mbC^\bot. As it will become clear later on, this result suffices to prove that the translations in question are conservative ones.

Lemma 2.5.20

1. Let $v \in V_{\text{mbC}}$. Therefore, there exists $v' \in V_{\text{mbC}^\bot}$ such that $v'(\varphi^*) = v(\varphi)$, for every $\varphi \in L_\Sigma$.

2. Let $v \in V_{\text{mbC}^\bot}$. Therefore, there exists $v' \in V_{\text{mbC}}$ such that $v'(\varphi^0) = v(\varphi)$, for every $\varphi \in L_\Sigma$.

Proof 1. Let v be a valuation for mbC. Define a mapping $v' : L_\Sigma \rightarrow \{0, 1\}$ by induction on the complexity of the formula $\psi \in L_\Sigma$ as follows:

- If $\psi = q \in \text{Var}$, then $v'(q) = v(q)$.
- If $\psi = \bot$, then $v'(\bot) = 0$.
- If $\psi = \delta \rightarrow \gamma$, then $v'(\delta \rightarrow \gamma) = 1$ iff $v'(\delta) = 0$ or $v'(\gamma) = 1$.
- If $\psi = \neg \gamma$, then

$$v'(\neg \gamma) = \begin{cases} 1 & \text{if } v'(\gamma) = 0 \\ v(\neg \delta) & \text{if } \neg \gamma = (\neg \delta)^* \\ \text{arbitrary} & \text{otherwise.} \end{cases}$$

- If $\psi = \circ \gamma$, then

$$v'(\circ \gamma) = \begin{cases} 0 & \text{if } v'(\gamma) = v'(\neg \gamma) = 1 \\ v(\circ \delta) & \text{if } \circ \gamma = (\circ \delta)^* \\ \text{arbitrary} & \text{otherwise.} \end{cases}$$

Using Corollary 2.5.18, it is easy to prove by induction on the complexity of formulas that v' is well-defined and $v'(\varphi^*) = v(\varphi)$ for every $\varphi \in L_\Sigma$. Additionally, $v' \in V_{\text{mbC}^\bot}$ by the proof of Lemma 2.5.9.
2. Let v be a valuation for mbC^\bot. Consider a mapping $v' : \mathcal{L}_\Sigma \to \{0, 1\}$ defined by induction as follows:

- If $\psi = q \in \text{Var}$, then $v'(q) = v(q)$.
- If $\psi = \delta \land \gamma$, then $v'(\delta \land \gamma) = 1$ iff $v'(\delta) = v'(\gamma) = 1$.
- If $\psi = \delta \lor \gamma$, then $v'(\delta \lor \gamma) = 0$ iff $v'(\delta) = v'(\gamma) = 0$.
- If $\psi = \delta \rightarrow \gamma$, then $v'(\delta \rightarrow \gamma) = 1$ iff $v'(\delta) = 0$ or $v'(\gamma) = 1$.
- If $\psi = \neg \gamma$, then

 $$v'(\neg \gamma) = \begin{cases}
 1 & \text{if } v'(\gamma) = 0 \\
 v(\neg \delta) & \text{if } \neg \gamma = (\neg \delta)^\circ \\
 \text{arbitrary} & \text{otherwise}.
 \end{cases}$$

- If $\psi = \circ \gamma$, then

 $$v'(\circ \gamma) = \begin{cases}
 0 & \text{if } v'(\gamma) = v'(\neg \gamma) = 1 \\
 v(\circ \delta) & \text{if } \circ \gamma = (\circ \delta)^\circ \\
 \text{arbitrary} & \text{otherwise}.
 \end{cases}$$

Using Corollary 2.5.18, one can simply prove by induction on the complexity of formulas that v' is well-defined and $v'(\phi^\circ) = v(\phi)$ for every $\phi \in \mathcal{L}_{\Sigma \bot}$. Moreover, $v' \in V_{\text{mbC}}$ by the proof of Lemma 2.5.9.

The equivalence between these logics in the different languages can then be established by the following theorem:

Lemma 2.5.21 The functions $^* : \mathcal{L}_\Sigma \to \mathcal{L}_{\Sigma \bot}$ and $^\circ : \mathcal{L}_{\Sigma \bot} \to \mathcal{L}_\Sigma$ satisfy the following:

$$\vdash_{\text{mbC}^\bot} \varphi \iff \vdash_{\text{mbC}} \varphi^\circ$$

$$\vdash_{\text{mbC}} \varphi \iff \vdash_{\text{mbC}^\bot} \varphi^*.$$

Proof As a consequence of the completeness of the logics in both languages, the lemma can be proved by using valuation semantics, namely:

$$\models_{V_{\text{mbC}^\bot}} \varphi \iff \models_{V_{\text{mbC}}} \varphi^\circ$$

$$\models_{V_{\text{mbC}}} \varphi \iff \models_{V_{\text{mbC}^\bot}} \varphi^*$$

or equivalently by contraposition:

$$\exists v \in V_{\text{mbC}^\bot} : v(\varphi) = 0 \iff \exists v \in V_{\text{mbC}} : v(\varphi^\circ) = 0$$

$$\exists v \in V_{\text{mbC}} : v(\varphi) = 0 \iff \exists v \in V_{\text{mbC}^\bot} : v(\varphi^*) = 0.$$
For the first equivalence, suppose that there exists \(v \in V_{mbC}^\perp \) such that \(v(\varphi) = 0 \). By item 2 of Lemma 2.5.20, there exists \(v' \in V_{mbC} \) such that \(v'(\varphi^\circ) = v(\varphi) = 0 \). Conversely, if \(v(\varphi^\circ) = 0 \) for some \(v \in V_{mbC} \) then, by item 1 of Lemma 2.5.19, there exists \(v' \in V_{mbC}^\perp \) such that \(v'(\varphi) = v(\varphi^\circ) = 0 \).

Now, suppose that there exists \(v \in V_{mbC}^\perp \) such that \(v(\varphi) = 0 \). Because of item 1 of Lemma 2.5.20, there exists \(v' \in V_{mbC}^\perp \) such that \(v'(\varphi^\circ) = v(\varphi) = 0 \). Conversely, if \(v(\varphi^\circ) = 0 \) for some \(v \in V_{mbC}^\perp \) then, by Lemma 2.5.19, item 2, there exists \(v' \in V_{mbC} \) such that \(v'(\varphi) = v(\varphi^\circ) = 0 \).

Theorem 2.5.22 The mapping \(\circ : L_{\Sigma_1}^\perp \rightarrow L_{\Sigma} \) is a conservative translation from \(mbC^\perp \) to \(mbC \). The mapping \(* : L_{\Sigma} \rightarrow L_{\Sigma_1}^\perp \) is a conservative translation from \(mbC \) to \(mbC^\perp \).

Proof This result is a direct consequence of Theorem 2.4.2 and Lemma 2.5.21.

It is worth noting that the disjunction \(\lor \) inside \(mbC^\perp \) must be defined exactly as it is proposed here: if disjunction is interpreted as it usually is, in terms of the implication, the resulting mapping is no longer a conservative translation:

Proposition 2.5.23 Let \(* : L_{\Sigma} \rightarrow L_{\Sigma_1}^\perp \) be the translation mapping of Definition 2.5.15 except in the case of the clause for \(\lor \), which is replaced by the following:

\[
(\alpha \lor \beta)^* = (\alpha^* \rightarrow \beta^*) \rightarrow \beta^*.
\]

Then the mapping \(* \), thus defined, is not a conservative translation even though it is a translation from \(mbC \) to \(mbC^\perp \).

Proof First observe that both formulas \(\alpha \lor \beta \) and \((\alpha \rightarrow \beta) \rightarrow \beta \) are translated into the same formula:

\[
(\alpha \lor \beta)^* = (\alpha^* \rightarrow \beta^*) \rightarrow \beta^* = ((\alpha \rightarrow \beta) \rightarrow \beta)^*,
\]

and thus the translation is not injective. Moreover, there is a way to choose a formula whose translation under \(* \) is a theorem, while there is some other formula translated in the same theorem which is not a theorem of the source logic. Consider, for instance, the formula \(\bot_{(\alpha \lor \beta)} \) in \(L_{\Sigma} \) and let \(\varphi \) be the formula \(\neg \bot_{(\alpha \lor \beta)} \), that is:

\[
\varphi = \neg \left(\circ (\alpha \lor \beta) \land \neg (\alpha \lor \beta) \land (\alpha \lor \beta) \right).
\]

It is easy to see that \(\varphi^* \) is a theorem of \(mbC^\perp \), and \(\varphi \) is also a theorem of \(mbC \). But now consider the following formula in \(L_{\Sigma} \):

\[
\psi = \neg \left(\circ (\alpha \rightarrow \beta) \rightarrow \beta) \land \neg (\alpha \lor \beta) \land (\alpha \lor \beta) \right).
\]
2.5 Reintroducing \(\text{mbC} \) as an Expansion of CPL

It is a straightforward task to prove that \(\psi^* = \varphi^* \), however, \(\psi \) is not a theorem in the source logic. This shows that

\[
\vdash_{\text{mbC}} \psi \iff \vdash_{\text{mbC}\bot} \psi^*.
\]

This illustrates the consequences of a logic not being self-extensional (recall the end of Sect. 2.3) and draws our attention to the care required when dealing with this kind of logic. The last proposition shows that the right translation of disjunctions inside \(\text{mbC}\bot \) is done through a schema formula that uses \(\rightarrow \) and \(\bot \). As the example above shows, the other formulation of disjunction (just using \(\rightarrow \)) simply does not work, despite both formulations being equivalent in \(\text{mbC}\bot \).

Although \(\text{mbC} \) and \(\text{mbC}\bot \) are equivalent in the sense of being inter-translatable, they are not the same logic: there are some subtle distinctions between them, that will be explored in Sect. 3.4.

References

Paraconsistent Logic: Consistency, Contradiction and Negation
Carnielli, W.; Coniglio, M.E.
2016, XXIV, 398 p. 2 illus., Hardcover
ISBN: 978-3-319-33203-1