Contents

1 Introduction: Different Approaches to Numerical Modeling of Sea Waves—Specifics of Current Approach 1

2 Two-Dimensional Wave Model 7
 2.1 2-D Equations of Potential Motion with Free Surface 7
 2.2 Conformal Coordinates and Equations in the Conformal Coordinates ... 9
 2.3 Numerical Solution of Potential Equations 15
 2.4 Conclusion ... 17

3 Stationary Solutions of Potential Equations 19
 3.1 The Stationary Form of Equations 20
 3.2 Pure Gravity Waves .. 21
 3.3 Gravity-Capillary Waves 29
 3.4 Pure Capillary Waves ... 32
 3.5 Conclusion ... 33

4 Two-Dimensional Wave Modeling Based on Conformal Mapping ... 35
 4.1 Validation of Two-Dimensional Model by Comparison with the Stationary Solutions 35
 4.2 Examples on Non-stationary Solutions 38
 4.3 Simulation of Steep Waves 43
 4.4 Interaction of Surface Waves at Very Close Wave Numbers 53
 4.5 Conclusion ... 56

5 Statistical Properties of One-Dimensional Waves 59
 5.1 ‘Lifetime’ of Wave Components 59
 5.2 Statistical Characteristics of a Multi-mode Wave Field 61
 5.3 Mysterious Properties of ‘Upper’ Conformal Coordinates 68
 5.4 Conclusions ... 71
6 **Nonlinear Interaction in One-Dimensional Wave Field**
6.1 Adiabatic Transformation of Stokes Waves
6.2 Quasi-Stationary Regime
6.3 Transformation of Harmonic Wave on Deep Water
6.4 On Nonlinear Energy Transfer in Unidirected Adiabatic Surface Waves
6.5 Conclusions

7 **Modeling of Extreme Waves**
7.1 Extreme Wave Phenomenon
7.2 Description of the Numerical Experiments
7.3 The Breaking and Surviving Extreme Waves
7.4 The Properties of Extreme Waves
7.5 Statistics of Extreme Waves
7.6 Conclusion

8 **Numerical Investigation of Wave Breaking**
8.1 Wave-Breaking Phenomenon
8.2 Description of the Numerical Experiments
8.3 Results of the Numerical Experiments
8.4 Nonlinear Sharpening of Waves as a Possible Cause of Breaking
8.5 Conclusions

9 **Numerical Modeling of Wind–Wave Interaction**
9.1 Wave Boundary Layer (WBL)
9.2 Equations of WBL
9.3 The Numerical Scheme for WBL Equations
9.4 The Coupling of Wave Models with the Model of WBL
9.5 The Structure of Surface Pressure Above Solid Waves
9.6 Description of the Numerical Experiments with the Coupled Model
9.7 Evolution of Waves
9.8 Wave-Produced Momentum Flux (WPMF)
9.9 Evaluation of β-Function
9.10 Conclusions

10 **One-Dimensional Modeling of the WBL**
10.1 The One-Dimensional Model of WBL
10.2 Vertical Structure of WBL
10.3 Drag Coefficient at High Wind Speed
10.4 Evolution of Wave Field
10.5 Wind Input
10.6 Wave Dissipation
10.7 Simulation of One-Dimensional Wave Field Evolution
10.8 Conclusions
11 Numerical Investigation of Turbulence Generation in Non-breaking Potential Waves

11.1 Turbulence Generation by Potential Waves. Theoretical Background

11.2 Cylindrical Conformal Coordinates

11.3 Equation for Vortical Motion

11.4 Large-Eddy Simulation Approach

11.5 Modeling of Waves

11.6 Results of Simulations

11.7 Coupling Between Waves and Upper-Ocean Layer

11.8 Conclusion

12 Three-Dimensional Modeling of Potential Waves

12.1 Existing Approaches to Modeling of 3-D Waves, Their Advantages, and Disadvantages

12.2 Equations and Transformation of Coordinates

12.3 Three-Dimensional Deepwater Wave Model

12.4 Linear (Analytic) and Nonlinear Components of Velocity Potential. Numerical Solution of 3-D Equation for Velocity Potential

12.5 Validation of the 3-D Deepwater Model

12.6 Simulation of a Multi-Mode Wave Field

12.7 Ensemble Modeling of 3-D Waves

12.8 Comparison of Linear and Nonlinear Extreme Wave Statistics

12.9 Conclusions

Afterword: What Has Been Done

References