Contents

1 Introduction .. 1
 1.1 Distance Amplitude Correction Curve 2
 1.2 Distance-Gain-Size Method (DGS) 3
 1.3 Key Differences: DAC Versus DGS 4
 1.4 Foresight to This Book 5
References ... 5

2 State of the Art: DAC and DGS 7
 2.1 Distance Amplitude Curve 7
 2.2 Distance–Gain–Size Method 8
 2.2.1 EN ISO 16811:2012 9
 2.2.2 DGS Evaluation 9
References ... 19

3 DGS Deviations Using Angle Beam Probes 21
 3.1 Sound Fields .. 23
 3.2 A Manufacturer-Independent Issue 25
 3.3 The Beginning of a New Probe Technology 26
References ... 27

4 The New Probe Technology, Single Element Probes 29
 4.1 Design Principle 29
 4.2 Calculation Method 31
 4.2.1 The Fastest Path 32
 4.2.2 Included Angle 34
 4.2.3 Time of Flight 34
 4.2.4 Angle in the Test Material 35
 4.2.5 Angles in the Wedge of the Probe 35
 4.2.6 Transducer Coordinates 36
 4.2.7 Calculation Summary 37
4.3 Necessary Adaptations

4.3.1 Phase Shift

4.3.2 Corrected Angle of Incidence

4.3.3 Area Correction

4.4 Single Element Probes

4.5 Rotational Symmetry

4.5.1 Measurement of the Sound Fields

4.6 Advantage of the New Probe Technology

References

5 New Probe Technology, Phased Array Probes

5.1 Delay Laws

5.2 DGS Accuracy

5.3 Sound Exit Points

References

6 New Probe Technology, Curved Coupling Surfaces

6.1 Fastest Path

6.2 Angles

6.3 Transducer Coordinates

6.4 Example: Solid Axle

6.5 Delay Laws

References

7 Bandwidth-Dependent DGS Diagrams

7.1 Single Frequency Ultrasound

7.1.1 Near Field Length

7.2 Multi-frequency Ultrasound

7.2.1 Near Field Length

7.2.2 Back Wall Echo Curve

7.2.3 ERS Curves

References

8 Applying Bandwidth-Dependent DGS Diagrams

8.1 Results Using Phased Array Angle Beam Probes

References

9 Bandwidth-Dependent DAC Curves

9.1 Calculating Bandwidth-Dependent DAC Curves

9.2 Applying the Bandwidth-Dependent DAC Curves

9.2.1 Using a Reference Echo from a Calibration Standard

9.2.2 Using One Single Side-Drilled Hole as Reference

9.2.3 Recording a DAC Curve for One Single Angle

9.2.4 Pros and Cons

References
Defect Sizing Using Non-destructive Ultrasonic Testing
Applying Bandwidth-Dependent DAC and DGS Curves
Kleinert, W.
2016, XVIII, 118 p. 90 illus., 83 illus. in color., Hardcover
ISBN: 978-3-319-32834-8