Contents

Foreword ... v
Preface .. vii

1 Dimensions and units ... 1
 1.1 Fundamental concepts ... 1
 1.1.1 Base units and dimensions 1
 1.1.2 Dimensions of common physical quantities 2
 1.1.3 The Buckingham Pi theorem 3
 1.1.4 Absolute errors, relative errors, and units 5
 1.1.5 Units and computers 5
 1.1.6 Unit systems .. 5
 1.1.7 Example on challenges arising from unit systems ... 6
 1.1.8 PhysicalQuantity: a tool for computing with units .. 7
 1.2 Parampool: user interfaces with automatic unit conversion 9
 1.2.1 Pool of parameters 10
 1.2.2 Fetching pool data for computing 11
 1.2.3 Reading command-line options 11
 1.2.4 Setting default values in a file 12
 1.2.5 Specifying multiple values of input parameters 13
 1.2.6 Generating a graphical user interface 14

2 Ordinary differential equation models 17
 2.1 Exponential decay problems 17
 2.1.1 Fundamental ideas of scaling 17
 2.1.2 The basic model problem 18
 2.1.3 The technical steps of the scaling procedure 19
 2.1.4 Making software for utilizing the scaled model 21
 2.1.5 Scaling a generalized problem 25
 2.1.6 Variable coefficients 31
 2.1.7 Scaling a cooling problem with constant temperature in the surroundings 32
2.2 Vibration problems 49
 2.2.1 Undamped vibrations without forcing 49
 2.2.2 Undamped vibrations with constant forcing 53
 2.2.3 Undamped vibrations with time-dependent forcing 53
 2.2.4 Damped vibrations with forcing 61
 2.2.5 Oscillating electric circuits 67

3 Basic partial differential equation models 69
 3.1 The wave equation 69
 3.1.1 Homogeneous Dirichlet conditions in 1D 69
 3.1.2 Implementation of the scaled wave equation 71
 3.1.3 Time-dependent Dirichlet condition 72
 3.1.4 Velocity initial condition 75
 3.1.5 Variable wave velocity and forcing 77
 3.1.6 Damped wave equation 80
 3.1.7 A three-dimensional wave equation problem 81
 3.2 The diffusion equation 81
 3.2.1 Homogeneous 1D diffusion equation 82
 3.2.2 Generalized diffusion PDE 83
 3.2.3 Jump boundary condition 85
 3.2.4 Oscillating Dirichlet condition 86
 3.3 Reaction-diffusion equations 89
 3.3.1 Fisher’s equation 89
 3.3.2 Nonlinear reaction-diffusion PDE 91
 3.4 The convection-diffusion equation 92
 3.4.1 Convection-diffusion without a force term 92
 3.4.2 Stationary PDE 95
 3.4.3 Convection-diffusion with a source term 97

4 Advanced partial differential equation models 99
 4.1 The equations of linear elasticity 99
 4.1.1 The general time-dependent elasticity problem 99
 4.1.2 Dimensionless stress tensor 101
 4.1.3 When can the acceleration term be neglected? 101
 4.1.4 The stationary elasticity problem 103
 4.1.5 Quasi-static thermo-elasticity 105
 4.2 The Navier-Stokes equations 106
 4.2.1 The momentum equation without body forces 107
 4.2.2 Scaling of time for low Reynolds numbers 109
4.2.3 Shear stress as pressure scale 110
4.2.4 Gravity force and the Froude number 110
4.2.5 Oscillating boundary conditions and the Strouhal number ... 110
4.2.6 Cavitation and the Euler number 111
4.2.7 Free surface conditions and the Weber number 112
4.3 Thermal convection 113
 4.3.1 Forced convection 113
 4.3.2 Free convection 114
 4.3.3 The Grashof, Prandtl, and Eckert numbers 117
 4.3.4 Heat transfer at boundaries and the Nusselt and Biot numbers .. 120
4.4 Compressible gas dynamics 121
 4.4.1 The Euler equations of gas dynamics 121
 4.4.2 General isentropic flow 123
 4.4.3 The acoustic approximation for sound waves 124
4.5 Water surface waves driven by gravity 126
 4.5.1 The mathematical model 126
 4.5.2 Scaling ... 127
 4.5.3 Waves in deep water 128
 4.5.4 Long waves in shallow water 129
4.6 Two-phase porous media flow 130

References .. 135

Index ... 137
Scaling of Differential Equations
Langtangen, H.P.; Pedersen, G.K.
2016, XIII, 138 p. 22 illus., Softcover
ISBN: 978-3-319-32725-9