Contents

1 Introduction .. 1
 Reference .. 8

2 Applications of Seismic Monitoring in Combating Rock Burst Hazard .. 9
 2.1 Early Monitoring Facilities of South Africa 10
 2.2 Application of Seismic Data in Rock Mechanics Practice 13
 2.2.1 Applications Relating to 1970–1980 13
 2.2.2 Applications Relating to 1980–1990 16
 2.3 Summary .. 23
 References .. 24

3 Seismic Parameters and Their Physical Meaning 31
 3.1 Seismic Parameters Derived from Spectral Analysis 33
 3.1.1 Seismic Moment 34
 3.1.2 Seismic Energy 36
 3.1.3 Source Dimensions 36
 3.2 Stress Release Estimates 37
 3.3 Magnitude Concept 38
 3.4 Single Event Source Parameters 41
 3.4.1 Recording Geometry and Seismic Source Parameters 44
 3.5 Seismicity Versus Single Event 51
 3.6 Summary .. 52
 References .. 59

4 Seismic Source Parameter Ranges 61
 4.1 Seismic Energy 61
 4.2 Seismic Moment 69
 4.3 Seismic Energy Release Per Seismic Moment Ranges 73
 4.4 Apparent Stress Ranges 74
 4.5 Energy S Versus Energy P 75
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 Mine Induced Seismicity and Earthquakes</td>
<td>77</td>
</tr>
<tr>
<td>4.7 Summary</td>
<td>84</td>
</tr>
<tr>
<td>References</td>
<td>85</td>
</tr>
<tr>
<td>5 Interpretation Methods of Mine Induced Seismicity</td>
<td>87</td>
</tr>
<tr>
<td>5.1 Space Distribution of Seismicity</td>
<td>90</td>
</tr>
<tr>
<td>5.2 Activity Rates</td>
<td>94</td>
</tr>
<tr>
<td>5.3 Cumulative Values</td>
<td>102</td>
</tr>
<tr>
<td>5.4 Energy Index Concept</td>
<td>110</td>
</tr>
<tr>
<td>5.4.1 Development of the Concept</td>
<td>110</td>
</tr>
<tr>
<td>5.4.2 Applications of the Energy Index Concept at Cave Mining Operations</td>
<td>112</td>
</tr>
<tr>
<td>5.5 Some Problem Areas</td>
<td>121</td>
</tr>
<tr>
<td>5.5.1 Activity Rates</td>
<td>121</td>
</tr>
<tr>
<td>5.5.2 Locations of Events</td>
<td>123</td>
</tr>
<tr>
<td>5.5.3 Dividing the Mine into Polygons</td>
<td>126</td>
</tr>
<tr>
<td>5.5.4 Creating Sub-Data Sets</td>
<td>128</td>
</tr>
<tr>
<td>5.5.5 Parameters Derived from Moment and Energy</td>
<td>132</td>
</tr>
<tr>
<td>5.6 Limitations of Seismic Data</td>
<td>135</td>
</tr>
<tr>
<td>5.7 Summary</td>
<td>139</td>
</tr>
<tr>
<td>References</td>
<td>141</td>
</tr>
<tr>
<td>6 Palabora Seismic History</td>
<td>143</td>
</tr>
<tr>
<td>6.1 Palabora Seismic Network</td>
<td>147</td>
</tr>
<tr>
<td>6.2 Influence of the Network Upgrades on the Network</td>
<td>149</td>
</tr>
<tr>
<td>6.3 Quality of the Recorded Seismic Data</td>
<td>150</td>
</tr>
<tr>
<td>6.4 Achieved Objectives of Seismic Monitoring</td>
<td>153</td>
</tr>
<tr>
<td>6.4.1 Cave Monitoring at the Early Caving Stage</td>
<td>153</td>
</tr>
<tr>
<td>6.4.2 Cave Monitoring at the Later Caving Stages</td>
<td>157</td>
</tr>
<tr>
<td>6.4.3 Stress Distribution Around the Cave and Underground Excavations</td>
<td>161</td>
</tr>
<tr>
<td>6.4.4 Seismic Hazard Monitoring</td>
<td>162</td>
</tr>
<tr>
<td>6.5 General Description of Palabora Seismicity (Up to the End of 2013)</td>
<td>163</td>
</tr>
<tr>
<td>6.5.1 Seismic Energy Release Trends</td>
<td>173</td>
</tr>
<tr>
<td>6.5.2 Occurrence and Locations of Events Above</td>
<td>176</td>
</tr>
<tr>
<td>6.6 Summary</td>
<td>177</td>
</tr>
<tr>
<td>References</td>
<td>178</td>
</tr>
<tr>
<td>7 Palabora Caving Process as Evidenced by Induced Seismicity</td>
<td>181</td>
</tr>
<tr>
<td>7.1 Caving Process Time Periods</td>
<td>185</td>
</tr>
<tr>
<td>7.2 Caving Process Milestones</td>
<td>196</td>
</tr>
<tr>
<td>7.3 Palabora Seismic Response to the Caving Process</td>
<td>216</td>
</tr>
</tbody>
</table>
7.4 Comparison Between Initial and East Break Through 219
 7.4.1 Energy Index and Seismicity Elevation Changes
 Associated with the Break Through 222
 7.4.2 Seismic Energy Releases Associated with the Breaks
 Through . 225
 7.4.3 Seismic Deformations Associated with the Breaks
 Through . 232
 7.4.4 Percentages of Seismicity Taking Place
 Above the Mine . 236
 7.4.5 Similarities and Differences Between the Initial
 and East Break Through . 241
 7.5 Production Rates and Seismicity . 244
 7.6 Notes Relating to the Energy Index Time History Shape 253
 7.7 Failure of the Open Pit North Wall 256
 7.8 Summary . 260
References . 262

8 Caving Process and Seismic Hazard . 265
 8.1 Seismic Risk Indicators . 265
 8.1.1 Apparent Stress . 270
 8.1.2 Energy Index . 271
 8.1.3 Energy Release by Small Size Events 275
 8.2 Seismic Hazard Estimation . 279
 8.2.1 Statistical Method . 279
 8.2.2 Non-statistical Methods of Seismic Hazard
 Evaluation . 283
 8.2.3 Seismic Protocol . 285
 8.3 Medium and Short Term Seismic Hazard Assessments—Are
 They Possible? . 288
 8.4 Estimation of Maximum Possible Magnitude for Seismic
 Events of Mode Two and Three . 295
 8.4.1 Introduction . 295
 8.4.2 Discussion of Results . 296
 8.5 Conclusions . 300
 8.6 Summary . 301
References . 303

9 Problems Related to Software Versions . 305
 9.1 Conclusions . 306
 9.2 Analysis . 307
 9.3 Comments Regarding the Seismic Energy Release Rates
 Based on Palabora Experience with Software Version 9.2.1 . . . 320
 9.4 Summary . 325
References . 325
10 Seismic Preconditioning Below Lift 1 and Its Influence on the Cavability of Lift 2 Cave

10.1 Introduction ... 327
10.2 Comparison of Seismicity Recorded Below with that Recorded Above the Mine ... 329
10.3 Seismically Active Volume .. 332
 10.3.1 Seismically Active Volumes Based on Six Months Seismic Data for the Whole Mine 332
 10.3.2 Seismically Active Volume Based on Three Months Seismic Data for the Whole Mine 335
 10.3.3 Comparison of Results Based on Six and Three Months Time Periods .. 336
10.4 Apparent Volume and Seismically Active Volume 337
 10.4.1 Apparent Volume and Seismically Active Volume for the Whole Mine .. 337
 10.4.2 Seismicity Recorded Above and Below the Mine ... 340
 10.4.3 Seismically Active Volume Above the Mine .. 346
 10.4.4 Seismically Active Volume Below the Mine ... 348
 10.4.5 Comparison Between Apparent and Seismically Active Volumes Above and Below the Mine 351
10.5 Distributions of Seismic Energy and Moment Above and Below the Mine Foot Print 353
10.6 Conclusions ... 360
10.7 Summary ... 361
References ... 363

11 Palabora Lift 2 Mine Seismic System .. 365
11.1 Introduction ... 366
11.2 Seismic Catalogue Completeness and Seismic Sensor Configurations .. 367
11.3 Experience Based on Palabora Lift 1 Seismic System 369
 11.3.1 Lift 1 Seismic Network Successes and Failures .. 370
11.4 Experience from Other Networks Monitoring the Caving Process ... 372
11.5 Seismic System Management Systems 374
11.6 Palabora Lift 2 Seismic Network ... 375
 11.6.1 Lift 2 Seismic System Objectives of Monitoring ... 375
 11.6.2 Recording Station Configuration for Lift 2 Seismic Network .. 376
 11.6.3 Palabora Lift 2 Expected Seismic Catalogue Completeness ... 376
References ... 377
12 Lift 2 Palabora—Seismic Hazard Monitoring 379
 12.1 Lift 1 Seismic Hazard Sources 380
 12.1.1 Caving Process ... 381
 12.1.2 Remnant Mining at the West
 Towards the Mica Fault ... 384
 12.1.3 Restarting of Mining After Non-production Periods 385
 12.1.4 Movements Along the Wedge Formed
 by the Main Faults .. 387
 12.2 Statistical Hazard Estimation 388
 12.3 Parameters Used for Estimating the Seismic Hazard 390
 12.4 Seismic Hazard Monitoring Report—Example 392
 12.5 Summary .. 399
 References .. 402

Appendix A: References Relating to Palabora Mine 403

Appendix B: Press Release .. 407

Index .. 409
Mine Seismology: Data Analysis and Interpretation
Palabora Mine Caving Process as Revealed by Induced Seismicity
Glazer, S.N.
2016, XV, 414 p. 261 illus., 36 illus. in color., Hardcover
ISBN: 978-3-319-32611-5