Contents

1 Basic Principles of ERP Research, Surprise, and Probability Estimation ... 1
 1.1 Data Acquisition and Initial Analysis 1
 1.2 Signal-to-Noise Ratio Estimation for Event-Related Potentials ... 6
 1.3 Circularity in Data Analyses 8
 1.4 Probabilities and Surprise 9
 1.4.1 Bayesian Updating ... 10
 1.4.2 Predictive Surprise .. 11
 1.5 Probability Weighting Functions 12

2 Introduction to Model Estimation and Selection Methods 15
 2.1 An Example Study .. 15
 2.2 Classical Single-Level Models 16
 2.2.1 The Null and Informative Hypotheses 16
 2.2.2 The General Linear Model 17
 2.3 Hierarchical Multiple-Level Models 19
 2.3.1 The First Level ... 19
 2.3.2 The Second Level .. 20
 2.3.3 The Third Level .. 20
 2.4 Model Estimation and Selection 22
 2.4.1 Collapsing and Augmenting the Hierarchical Model 23
 2.4.2 Model Parameter Optimization and Likelihood
 Calculation ... 25
 2.4.3 Model Selection Using Bayes Factors and Posterior
 Model Probabilities ... 27
 2.4.4 Group Studies .. 28
 2.5 A Transfer Example Experiment—Setup 29
 2.5.1 Signal-to-Noise Ratio Simulation 31
 2.5.2 Synthetic Data and Experimental Conditions 32
 2.5.3 The Model Space 34
2.6 A Transfer Example Experiment—Results
2.6.1 A Single Subject
2.6.2 Multiple Subjects
2.7 Evaluation Summary

3 A New Theory of Trial-by-Trial P300 Amplitude Fluctuations
3.1 Overview
3.2 Participants, Experimental Design, Data Acquisition, and Data Analysis
3.3 State-of-the-Art Observer Models and Surprise
3.3.1 Approach by Squires et al. (SQU)
3.3.2 Approach by Mars et al. (MAR)
3.3.3 Approach by Ostwald et al. (OST)
3.3.4 Surprise Based on the SQU, MAR, and OST Models
3.4 The Digital Filtering Model (DIF)
3.4.1 Short-Term Memory
3.4.2 Long-Term Memory
3.4.3 Alternation Expectation
3.4.4 Explanatory Notes
3.4.5 Surprise Based on the DIF Model
3.4.6 DIF Model Parameter Training
3.5 Specification of the Design Matrices for Model Estimation and Selection in the Oddball Task
3.6 Results
3.6.1 Conventional ERP Analyses
3.6.2 Model-Based Trial-by-Trial Analyses
3.7 Summary and Discussion

4 Bayesian Inference and the Urn-Ball Task
4.1 Overview
4.2 Participants, Experimental Design, Data Acquisition, and Data Analysis
4.3 The Bayesian Observer Model
4.3.1 Bayes’ Theorem and the Urn-Ball Task
4.3.2 The Belief Distribution (BEL)
4.3.3 The Prediction Distribution (PRE)
4.3.4 Surprise Based on the Bayesian Observer Model
4.3.5 Summary and Visualization of Bayesian Inference
4.4 Incorporating Probability Weighting Functions into the Bayesian Observer Model
4.4.1 Probability Weighting of the Inference Input (BEL_{SI} and PRE_{SI})
4.4.2 Probability Weighting of the Inference Output (BEL_{SO} and PRE_{SO})
4.4.3 Weighting Parameter Optimization
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 The DIF Model in the Urn-Ball Task</td>
<td>87</td>
</tr>
<tr>
<td>4.5.1 The Objective Initial Prior (DIF_{OP})</td>
<td>88</td>
</tr>
<tr>
<td>4.5.2 The Initial Prior Using Weighting Functions (DIF_{SP})</td>
<td>88</td>
</tr>
<tr>
<td>4.6 Specification of the Design Matrices for Model Estimation</td>
<td>89</td>
</tr>
<tr>
<td>and Selection in the Urn-Ball Task</td>
<td></td>
</tr>
<tr>
<td>4.7 Results</td>
<td>90</td>
</tr>
<tr>
<td>4.7.1 Conventional ERP Analyses</td>
<td>90</td>
</tr>
<tr>
<td>4.7.2 Model-Based Trial-by-Trial Analyses</td>
<td>94</td>
</tr>
<tr>
<td>4.8 Summary and Discussion</td>
<td>106</td>
</tr>
<tr>
<td>5 Summary and Outlook</td>
<td>111</td>
</tr>
<tr>
<td>Appendix</td>
<td>115</td>
</tr>
<tr>
<td>Bibliography</td>
<td>119</td>
</tr>
</tbody>
</table>
Computational Modeling of Neural Activities for Statistical Inference
Kolossa, A.
2016, XXIV, 127 p. 42 illus., 20 illus. in color., Hardcover
ISBN: 978-3-319-32284-1