1 New Approaches for Hierarchical Image Decomposition, Based on IDP, SVD, PCA and KPCA .. 1
Roumen Kountchev and Roumiana Kountcheva

1.1 Introduction ... 2
1.2 Related Work .. 3
1.3 Image Representation Based on Branched Inverse Difference Pyramid .. 4
 1.3.1 Principles for Building the Inverse Difference Pyramid .. 4
 1.3.2 Mathematical Representation of n-Level IDP .. 5
 1.3.3 Reduced Inverse Difference Pyramid .. 8
 1.3.4 Main Principle for Branched IDP Building .. 8
 1.3.5 Mathematical Representation for One BIDP Branch .. 9
 1.3.6 Transformation of the Retained Coefficients into Sub-blocks of Size 2×2 .. 11
 1.3.7 Experimental Results .. 13
1.4 Hierarchical Singular Value Image Decomposition .. 15
 1.4.1 SVD Algorithm for Matrix Decomposition .. 17
 1.4.2 Particular Case of the SVD for Image Block of Size 2×2 .. 18
 1.4.3 Hierarchical SVD for a Matrix of Size $2^n \times 2^n$.. 19
 1.4.4 Computational Complexity of the Hierarchical SVD of Size $2^n \times 2^n$.. 23
 1.4.5 Representation of the HSVD Algorithm Through Tree-like Structure .. 25
1.5 Hierarchical Adaptive Principal Component Analysis for Image Sequences .. 27
 1.5.1 Principle for Decorrelation of Image Sequences by Hierarchical Adaptive PCA .. 30
1.5.2 Description of the Hierarchical Adaptive PCA Algorithm .. 30
1.5.3 Setting the Number of the Levels and the Structure of the HAPCA Algorithm 35
1.5.4 Experimental Results .. 39
1.6 Hierarchical Adaptive Kernel Principal Component Analysis for Color Image Segmentation ... 42
1.6.1 Mathematical Representation of the Color Adaptive Kernel PCA. 42
1.6.2 Algorithm for Color Image Segmentation by Using HAKPCA 47
1.6.3 Experimental Results .. 50
1.7 Conclusions ... 53

2 Intelligent Digital Signal Processing and Feature Extraction Methods 59
János Szalai and Ferenc Emil Mózes
2.1 Introduction. ... 59
2.2 The Fourier Transform .. 60
2.2.1 Application of the Fourier Transform ... 62
2.3 The Short-Time Fourier Transform. ... 64
2.3.1 Application of the Short-Time Fourier Transform ... 65
2.4 The Wavelet Transform ... 67
2.4.1 Application of the Wavelet Transform. .. 70
2.5 The Hilbert-Huang Transform .. 71
2.5.1 Introducing the Instantaneous Frequency ... 71
2.5.2 Computing the Instantaneous Frequency ... 72
2.5.3 Application of the Hilbert-Huang Transform ... 76
2.6 Hybrid Signal Processing Systems ... 80
2.6.1 The Discrete Wavelet Transform and Fuzzy C-Means Clustering 80
2.6.2 Automatic Sleep Stage Classification ... 82
2.6.3 The Hilbert-Huang Transform and Support Vector Machines 85
2.7 Conclusions ... 88
References .. 88

3 Multi-dimensional Data Clustering and Visualization via Echo State Networks 93
Petia Koprinkova-Hristova
3.1 Introduction. ... 93
3.2 Echo State Networks and Clustering Procedure ... 95
3.2.1 Echo State Networks Basics ... 95
3.2.2 Effects of IP Tuning Procedure ... 97
3.2.3 Clustering Algorithms ... 101
3.3 Examples

3.3.1 Clustering of Steel Alloys in Dependence on Their Composition

3.3.2 Clustering and Visualization of Multi-spectral Satellite Images

3.3.3 Clustering of Working Regimes of an Industrial Plant

3.3.4 Clustering of Time Series from Random Dots Motion Patterns

3.3.5 Clustering and 2D Visualization of “Sound Pictures”

3.4 Summary of Results and Discussion

3.5 Conclusions

References

4 Unsupervised Clustering of Natural Images in Automatic Image Annotation Systems

Margarita Favorskaya, Lakhmi C. Jain and Alexander Proskurin

4.1 Introduction

4.2 Related Work

4.2.1 Unsupervised Segmentation of Natural Images

4.2.2 Unsupervised Clustering of Images

4.3 Preliminary Unsupervised Image Segmentation

4.4 Feature Extraction Using Parallel Computations

4.4.1 Color Features Representation

4.4.2 Calculation of Texture Features

4.4.3 Fractal Features Extraction

4.4.4 Enhanced Region Descriptor

4.4.5 Parallel Computations of Features

4.5 Clustering of Visual Words by Enhanced SOINN

4.5.1 Basic Concepts of ESOINN

4.5.2 Algorithm of ESOINN Functioning

4.6 Experimental Results

4.7 Conclusion and Future Development

References

5 An Evolutionary Optimization Control System for Remote Sensing Image Processing

Victoria Fox and Mariofanna Milanova

5.1 Introduction

5.2 Background Techniques

5.2.1 Darwinian Particle Swarm Optimization

5.2.2 Total Variation for Texture-Structure Separation

5.2.3 Multi-phase Chan-Vese Active Contour Without Edges
5.3 Evolutionary Optimization of Segmentation
5.3.1 Darwinian PSO for Thresholding
5.3.2 Novel Darwinian PSO for Relative Total Variation
5.3.3 Multi-phase Active Contour Without Edges with Optimized Initial Level Mask
5.3.4 Workflow of Proposed System

5.4 Experimental Results
5.4.1 Results
5.4.2 Discussion
5.4.3 Conclusion and Future Research

References

6 Tissue Segmentation Methods Using 2D Histogram Matching in a Sequence of MR Brain Images
Vladimir Kanchev and Roumen Kountchev
6.1 Introduction
6.2 Related Works
6.3 Overview of the Developed Segmentation Algorithm
6.4 Preprocessing and Construction of a Model and Test 2D Histograms
6.4.1 Transductive Learning
6.4.2 MRI Data Preprocessing
6.4.3 Construction of a 2D Histogram
6.4.4 Separation into MR Image Subsequences
6.4.5 Types of 2D Histograms and Preprocessing
6.5 Matching and Classification of a 2D Histogram
6.5.1 Construct Train 2D Histogram Segments Using 2D Histogram Matching
6.5.2 2D Histogram Classification After Distance Metric Learning
6.6 Segmentation Through Back Projection
6.7 Experimental Results
6.7.1 Test Data Sets and Parameters of the Developed Algorithm
6.7.2 Segmentation Results
6.8 Discussion
6.9 Conclusion
References

7 Multistage Approach for Simple Kidney Cysts Segmentation in CT Images
Veska Georgieva and Ivo Draganov
7.1 Introduction
7.1.1 Medical Aspect of the Problem for Kidney Cyst Detection
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.2</td>
<td>Review of Segmentation Methods</td>
<td>225</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Proposed Approach</td>
<td>229</td>
</tr>
<tr>
<td>7.2</td>
<td>Preprocessing Stage of CT Images</td>
<td>230</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Noise Reduction with Median Filter</td>
<td>230</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Noise Reduction Based on Wavelet Packet Decomposition and Adaptive Threshold</td>
<td>231</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Contrast Limited Adaptive Histogram Equalization (CLAHE)</td>
<td>232</td>
</tr>
<tr>
<td>7.3</td>
<td>Segmentation Stage</td>
<td>232</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Segmentation Based on Split and Merge Algorithm</td>
<td>232</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Clustering Classification of Segmented CT Image</td>
<td>234</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Segmentation Based on Texture Analysis</td>
<td>234</td>
</tr>
<tr>
<td>7.4</td>
<td>Experimental Results</td>
<td>239</td>
</tr>
<tr>
<td>7.5</td>
<td>Discussion</td>
<td>247</td>
</tr>
<tr>
<td>7.6</td>
<td>Conclusion</td>
<td>248</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>249</td>
</tr>
</tbody>
</table>

8 Audio Visual Attention Models in the Mobile Robots Navigation | 253

Snejana Pleshkova and Alexander Bekiarski

8.1 Introduction | 254
8.2 Related Work | 254

8.3 The Basic Definitions of the Human Audio Visual Attention | 256

8.4 General Probabilistic Model of the Mobile Robot Audio Visual Attention | 257

8.5 Audio Visual Attention Model Applied in the Audio Visual Mobile Robot System | 263

8.5.1 Room Environment Model for Description of Indoor Initial Audio Visual Attention | 263

8.5.2 Development of the Algorithm for Definition of the Mobile Robot Initial Audio Visual Attention Model | 266

8.5.3 Definition of the Initial Mobile Robot Video Attention Model with Additional Information from the Laser Range Finder Scan | 272

8.5.4 Development of the Initial Mobile Robot Video Attention Model Localization with Additional Information from a Speaker to the Mobile Robot Initial Position | 274

8.6 Definition of the Probabilistic Audio Visual Attention Mobile Robot Model in the Steps of the Mobile Robot Navigation Algorithm | 276

Contents xv
8.7 Experimental Results from the Simulations of the Mobile Robot Motion Navigation Algorithm Applying the Probabilistic Audio Visual Attention Model. 279

8.7.1 Experimental Results from the Simulations of the Mobile Robot Motion Navigation Algorithm Applying Visual Perception Only 280

8.7.2 Experimental Results from the Simulations of the Mobile Robot Motion Navigation Algorithm Using Visual Attention in Combination with the Visual Perception 282

8.7.3 Quantitative Comparison of the Simulations Results Applying Visual Perception Only, and Visual Attention with Visual Perception 283

8.7.4 Experimental Results from Simulations Using Audio Visual Attention in Combination with Audio Visual Perception 285

8.7.5 Quantitative Comparison of the Results Achieved in Simulations Applying Audio Visual Perception Only, and Visual Attention Combined with Visual Perception 287

8.8 Conclusion 289

References 291

9 Local Adaptive Image Processing 295

Rumen Mironov

9.1 Introduction 296

9.2 Method for Local Adaptive Image Interpolation 297

9.2.1 Mathematical Description of Adaptive 2D Interpolation 297

9.2.2 Analysis of the Characteristics of the Filter for Two-Dimensional Adaptive Interpolation 298

9.2.3 Evaluation of the Error of the Adaptive 2D Interpolation 302

9.2.4 Functional Scheme of the 2D Adaptive Interpolator 305

9.3 Method for Adaptive 2D Error Diffusion Halftoning 306

9.3.1 Mathematical Description of Adaptive 2D Error-Diffusion 306

9.3.2 Determining the Weighting Coefficients of the 2D Adaptive Halftoning Filter 308

9.3.3 Functional Scheme of 2D Adaptive Halftoning Filter 309

9.3.4 Analysis of the Characteristics of the 2D Adaptive Halftoning Filter 311
9.4 Method for Adaptive 2D Line Prediction of Halftone Images ... 314
 9.4.1 Mathematical Description of Adaptive 2D Line Prediction ... 314
 9.4.2 Synthesis and Analysis of Adaptive 2D LMS Codec for Linear Prediction 316
9.5 Experimental Results ... 320
 9.5.1 Experimental Results from the Work of the Developed Adaptive 2D Interpolator 320
 9.5.2 Experimental Results from the Work of the Developed Adaptive 2D Halftoning Filter 325
 9.5.3 Experimental Results from the Work of the Developed Codec for Adaptive 2D Linear Prediction ... 326
9.6 Conclusion ... 328
References ... 329

10 Machine Learning Techniques for Intelligent Access Control 331
 Wael H. Khalifa, Mohamed I. Roushdy and Abdel-Badeeh M. Salem
 10.1 Introduction ... 331
 10.2 Machine Learning Methodology for Biometrics ... 333
 10.2.1 Signal Capturing ... 333
 10.2.2 Feature Extraction ... 334
 10.2.3 Classification ... 334
 10.3 User Authentication Techniques ... 335
 10.4 Physiological Biometrics Taxonomy ... 336
 10.4.1 Finger Print ... 336
 10.4.2 Face ... 337
 10.4.3 Iris ... 337
 10.5 Behavioral Biometrics Taxonomy ... 339
 10.5.1 Keystroke Dynamics ... 339
 10.5.2 Voice ... 340
 10.5.3 EEG ... 340
 10.6 Multimodal Biometrics ... 341
 10.7 Applications ... 342
 10.8 Machine Learning Techniques for Biometrics ... 343
 10.8.1 Fisher’s Discriminant Analysis ... 343
 10.8.2 Linear Discriminant Classifier ... 345
 10.8.3 LVQ Neural Net ... 346
 10.8.4 Neural Networks ... 347
 10.9 Conclusion ... 349
References ... 351
Experimental Evaluation of Opportunity to Improve the Resolution of the Acoustic Maps

Volodymyr Kudriashov

11 Introduction

11.1 Theoretical Part

- **11.2.1 Signal Model Limitations**
- **11.2.2 Signal Model**
- **11.2.3 Acoustic Mapping Methods**

11.3 The Experimental Acoustic Camera Equipment

11.4 Experimental Results

- **11.4.1 Microphone Array Patterns Generated with the Delay-and-Sum Beamforming Method**
- **11.4.2 Microphone Array Patterns Generated with the Christensen Beamforming Method**
- **11.4.3 Microphone Array Patterns Generated with the Modified Capon-Based Beamforming Method**
- **11.4.4 Microphone Array Responses for Two Point-like Emitters**
- **11.4.5 The Acoustic Camera Responses for Two Point-like Emitters**

11.5 Conclusions

References

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>353</td>
</tr>
<tr>
<td>Theoretical Part</td>
<td>354</td>
</tr>
<tr>
<td>Signal Model Limitations</td>
<td>354</td>
</tr>
<tr>
<td>Signal Model</td>
<td>355</td>
</tr>
<tr>
<td>Acoustic Mapping Methods</td>
<td>357</td>
</tr>
<tr>
<td>The Experimental Acoustic Camera Equipment</td>
<td>359</td>
</tr>
<tr>
<td>Experimental Results</td>
<td>361</td>
</tr>
<tr>
<td>Microphone Array Patterns Generated with the Delay-and-Sum Beamforming Method</td>
<td>362</td>
</tr>
<tr>
<td>Microphone Array Patterns Generated with the Christensen Beamforming Method</td>
<td>363</td>
</tr>
<tr>
<td>Microphone Array Patterns Generated with the Modified Capon-Based Beamforming Method</td>
<td>365</td>
</tr>
<tr>
<td>Microphone Array Responses for Two Point-like Emitters</td>
<td>368</td>
</tr>
<tr>
<td>The Acoustic Camera Responses for Two Point-like Emitters</td>
<td>371</td>
</tr>
<tr>
<td>Conclusions</td>
<td>372</td>
</tr>
<tr>
<td>References</td>
<td>373</td>
</tr>
</tbody>
</table>
New Approaches in Intelligent Image Analysis
Techniques, Methodologies and Applications
Kountchev, R.; Nakamatsu, K. (Eds.)
2016, XX, 373 p. 157 illus., 119 illus. in color.,
Hardcover
ISBN: 978-3-319-32190-5