Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Framework</td>
<td>1</td>
</tr>
<tr>
<td>Nature of Science</td>
<td>1</td>
</tr>
<tr>
<td>Historical Reconstruction of the Oil Drop Experiment</td>
<td>3</td>
</tr>
<tr>
<td>From ‘Science in the Making’ to Contextual Teaching (Science Stories)</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>7</td>
</tr>
<tr>
<td>Method</td>
<td>9</td>
</tr>
<tr>
<td>Validation of Students’ Responses on Items in Pretest and Posttest</td>
<td>11</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>15</td>
</tr>
<tr>
<td>Millikan and the Oil Drop Experiment (Students’ Responses on Item 1 of Pretest)</td>
<td>15</td>
</tr>
<tr>
<td>Tentative Nature of Atomic Theories (Students’ Responses on Item 2 of Pretest)</td>
<td>17</td>
</tr>
<tr>
<td>Development of Scientific Knowledge (Students’ Responses on Item 3 of Pretest)</td>
<td>18</td>
</tr>
<tr>
<td>Scientific Method (Students’ Responses on Item 1 of Posttest)</td>
<td>20</td>
</tr>
<tr>
<td>Astrophysicists and the Expanding/Static Universe (Students’ Responses on Item 2 of Posttest)</td>
<td>21</td>
</tr>
<tr>
<td>Relationship Between Experimental Data and Scientific Theories (Students’ Responses on Item 3 of Posttest)</td>
<td>23</td>
</tr>
<tr>
<td>Relationship Between Controversy, Creativity, and Progress in Science (Students’ Responses on Item 4 of Posttest)</td>
<td>25</td>
</tr>
<tr>
<td>Context of Scientific Progress (Students’ Responses on Item 5 of Posttest)</td>
<td>27</td>
</tr>
<tr>
<td>Concept Maps Drawn by Experimental Group Students</td>
<td>29</td>
</tr>
<tr>
<td>Concept Maps Drawn by Student #2 (Experimental Group A)</td>
<td>29</td>
</tr>
<tr>
<td>Concept Maps Drawn by Student #30 (Experimental Group B)</td>
<td>31</td>
</tr>
<tr>
<td>Concept Maps Drawn by Student #9 (Experimental Group B)</td>
<td>35</td>
</tr>
<tr>
<td>Interviews with Experimental Group Students</td>
<td>38</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
</tr>
<tr>
<td>Interview with Student #9 (Experimental Group A)</td>
<td>38</td>
</tr>
<tr>
<td>Interview with Student #12 (Experimental Group A)</td>
<td>39</td>
</tr>
<tr>
<td>Interview with Student #20 (Experimental Group A)</td>
<td>40</td>
</tr>
<tr>
<td>Interview with Student #25 (Experimental Group A)</td>
<td>41</td>
</tr>
<tr>
<td>Interview with Student #13 (Experimental Group A)</td>
<td>42</td>
</tr>
<tr>
<td>Interview with Student #11 (Experimental Group B)</td>
<td>44</td>
</tr>
<tr>
<td>Interview with Student #8 (Experimental Group B)</td>
<td>45</td>
</tr>
<tr>
<td>Interview with Student #26 (Experimental Group B)</td>
<td>46</td>
</tr>
<tr>
<td>Interviews with Control Group Students</td>
<td>46</td>
</tr>
<tr>
<td>Interview with Student #8 (Control Group)</td>
<td>46</td>
</tr>
<tr>
<td>Interview with Student #9 (Control Group)</td>
<td>47</td>
</tr>
<tr>
<td>Interview with Student #19 (Control Group)</td>
<td>48</td>
</tr>
<tr>
<td>References</td>
<td>49</td>
</tr>
</tbody>
</table>

Conclusions and Educational Implications 51

Multiple Data Sources 52

How Concept Maps Can Facilitate Socratic Thinking 53

Changing Nature of Students’ Understanding of Progress in Science Based on Interviews with Experimental Group Students 54

History of Science Is ‘Inside’ Science 55

References 56

Appendix 57
Students' Understanding of Research Methodology in the Context of Dynamics of Scientific Progress
Niaz, M.; Rivas, M.
2016, XII, 58 p. 6 illus., Softcover
ISBN: 978-3-319-32039-7