## Contents

1 Kinematic Chains ................................................. 1
   1.1 Basic Concepts ............................................. 1
   1.2 Definitions .................................................. 2
      1.2.1 Degrees of Freedom (DOF) .............................. 2
      1.2.2 Links and Kinematic Pairs ............................. 3
      1.2.3 Classification of Kinematic Pairs ..................... 3
      1.2.4 Kinematic Chains, Mechanisms, Kinematic Skeletons and Machines .................................. 5
      1.2.5 Link Movement ........................................... 6
   1.3 Degrees of Freedom of Mechanisms ......................... 8
      1.3.1 Fixed Mechanisms. Structures .......................... 9
      1.3.2 Mechanisms with One DOF .............................. 10
      1.3.3 Mechanisms with More Than One DOF .................. 12
   1.4 Kinematic Inversions ......................................... 13
   1.5 Grashof’s Criterion .......................................... 13
   1.6 Mechanical Advantage ....................................... 15
   1.7 Kinematic Curves ............................................. 16
      1.7.1 Application of Different Mechanisms with Different Purposes .................................. 18

2 Kinematic Analysis of Mechanisms. Relative Velocity and Acceleration. Instant Centers of Rotation .......................... 21
   2.1 Velocity in Mechanisms ...................................... 21
      2.1.1 Position, Displacement and Velocity of a Point ....... 21
      2.1.2 Position, Displacement and Angular Velocity of a Rigid Body .................................. 23
      2.1.3 Relative Velocity Method ................................ 25
      2.1.4 Instant Center of Rotation Method ...................... 45
   2.2 Accelerations in Mechanisms .................................. 55
      2.2.1 Acceleration of a Point .................................. 56
      2.2.2 Relative Acceleration of Two Points .................... 58
2.2.3 Relative Acceleration of Two Points in the Same Rigid Body .......................... 60
2.2.4 Computing Acceleration in a Four-Bar Linkage .......... 62
2.2.5 The Coriolis Component of Acceleration ............... 68
2.3 Exercises with Their Solutions ............................... 74

3 Analytical Methods for the Kinematic Analysis of Planar Linkages. Raven’s Method ................................................. 111
3.1 Analytical Methods .............................................. 111
3.1.1 Trigonometric Method .................................. 112
3.1.2 Raven’s Method ............................................. 112
3.1.3 Complex Mechanism Analysis ............................ 132
3.2 Examples with Their Solutions .............................. 134

4 Graphical and Analytical Methods for Dynamic Analysis of Planar Linkages .................................................. 143
4.1 Machine Statics ................................................. 143
4.1.1 Force Transmission in a Mechanism ....................... 144
4.1.2 Static Equilibrium Conditions ............................ 144
4.1.3 Superposition Principle .................................. 151
4.1.4 Static Force Analysis. Graphical Method .............. 154
4.2 Dynamic Analysis .............................................. 158
4.2.1 Dynamic Equilibrium of a Particle with Mass .......... 158
4.2.2 Inertia Components of a Link with Planar Motion ..... 159
4.2.3 Inertial Components of a Plane Link ................. 162
4.2.4 Inertia Force Analysis in a Mechanism ................. 165
4.3 Dynamic Analysis. Matrix Method .......................... 174
4.4 Exercises with Solutions ..................................... 189

5 Balancing of Machinery ........................................ 195
5.1 Rotor Balancing ............................................... 195
5.1.1 Static Balance ............................................. 196
5.1.2 Dynamic Balance ....................................... 197
5.1.3 Analytical Method ....................................... 204
5.2 Inertia Balancing of Single and Multi-cylinder Engines ... 208
5.2.1 One-Cylinder Engines .................................. 208
5.2.2 Multi-cylinder in-Line Engines ....................... 218
5.3 Problems with Solutions .................................... 227

6 Flywheel Calculations ............................................. 233
6.1 Forces and Torques in Mechanisms ........................ 233
6.2 General Equation of Mechanism Motion .................... 234
6.3 Working Periods of a Cyclic Machine ..................... 235
6.4 Steady State .................................................. 237
6.5 Flywheels ..................................................... 238
6.6 Application Examples of Flywheels ........................ 239
7 Vibrations in Systems with One Degree of Freedom

7.1 Introduction to Oscillatory Motion

7.1.1 Fundamental Concepts of Vibrations

7.1.2 Concept of Degree of Freedom (DOF)

7.1.3 Parameters of a Mechanical System

7.1.4 Characterization of Oscillatory Systems

7.1.5 Harmonic Periodic Motion: Transient and Steady-State Regimes

7.2 Single Degree of Freedom (SDOF) Systems

7.2.1 Basic Discrete Model with One DOF

7.3 Free Vibrations in SDOF Systems

7.3.1 Undamped Free Vibrations of SDOF Systems

7.3.2 Free Vibrations with Viscous Damping

7.4 Forced Vibrations in SDOF Systems

7.4.1 Forced Vibrations with Harmonic Excitation

7.4.2 Harmonic Excitations in Machines

7.4.3 Vibration Isolation

8 Gears

8.1 Introduction

8.1.1 Characteristics of Motion Transmitted by Curves in Contact

8.1.2 Velocity Relationship Between Two Curves in Contact

8.1.3 Rolling Wheels

8.2 Toothed Wheels (Gears)

8.3 Condition for Constant Velocity Ratio. Fundamental Law of Gearing

8.4 Involute Teeth

8.5 Definitions and Nomenclature

8.6 Involute Tooth Action

8.7 Contact Ratio

8.8 Relationship Between Velocity Ratio and Base Circles

8.9 Interference in Involute Gears

8.10 Gear Classification

8.10.1 Cylindrical Gears

8.10.2 Bevel Gears

8.10.3 Hypoid Gears

8.11 Manufacturing of Toothed Wheels

8.12 Gear Standardization
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.13</td>
<td>Helical Gears</td>
<td>300</td>
</tr>
<tr>
<td>8.13.1</td>
<td>Helical Gear Parameters</td>
<td>301</td>
</tr>
<tr>
<td>8.13.2</td>
<td>Correlation with Spur Gears</td>
<td>303</td>
</tr>
<tr>
<td>8.13.3</td>
<td>Teeth Geometry</td>
<td>304</td>
</tr>
<tr>
<td>8.14</td>
<td>Bevel Gears</td>
<td>305</td>
</tr>
<tr>
<td>8.14.1</td>
<td>Design of a Bevel Gear System</td>
<td>306</td>
</tr>
<tr>
<td>8.14.2</td>
<td>Bevel Gears with Straight Teeth</td>
<td>308</td>
</tr>
<tr>
<td>8.14.3</td>
<td>Equivalent Spur Gear</td>
<td>308</td>
</tr>
<tr>
<td>8.14.4</td>
<td>Teeth Geometry in Bevel Gears with Straight Teeth</td>
<td>309</td>
</tr>
<tr>
<td>8.15</td>
<td>Force Analysis in Toothed Wheels</td>
<td>310</td>
</tr>
<tr>
<td>8.15.1</td>
<td>Forces in Spur Gears</td>
<td>310</td>
</tr>
<tr>
<td>8.15.2</td>
<td>Forces in Helical Gears</td>
<td>312</td>
</tr>
<tr>
<td>8.15.3</td>
<td>Forces on Bevel Gears</td>
<td>313</td>
</tr>
<tr>
<td>9</td>
<td>Gear Trains</td>
<td>315</td>
</tr>
<tr>
<td>9.1</td>
<td>Classification of Gear Trains</td>
<td>315</td>
</tr>
<tr>
<td>9.2</td>
<td>Ordinary Trains</td>
<td>316</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Simple Trains</td>
<td>316</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Compound Trains</td>
<td>318</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Gearboxes</td>
<td>319</td>
</tr>
<tr>
<td>9.3</td>
<td>Planetary or Epicyclic Trains</td>
<td>321</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Tabular Method</td>
<td>321</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Formula or Algebraic Method</td>
<td>323</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Bevel Gear Differential</td>
<td>323</td>
</tr>
<tr>
<td>9.4</td>
<td>Examples</td>
<td>325</td>
</tr>
<tr>
<td>10</td>
<td>Synthesis of Planar Mechanisms</td>
<td>331</td>
</tr>
<tr>
<td>10.1</td>
<td>Types of Synthesis</td>
<td>331</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Structural Synthesis</td>
<td>332</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Dimensional Synthesis</td>
<td>335</td>
</tr>
<tr>
<td>10.2</td>
<td>Function Generation Synthesis</td>
<td>337</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Graphical Methods</td>
<td>338</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Freudenstein’s Method</td>
<td>340</td>
</tr>
<tr>
<td>10.3</td>
<td>Trajectory Generation Synthesis</td>
<td>342</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Graphical Methods</td>
<td>343</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Analytical Methods</td>
<td>345</td>
</tr>
<tr>
<td>10.4</td>
<td>Optimal Synthesis of Mechanisms</td>
<td>350</td>
</tr>
<tr>
<td>10.5</td>
<td>Analysis of the Objective Function</td>
<td>351</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Function Generation Synthesis</td>
<td>351</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Trajectory Synthesis</td>
<td>352</td>
</tr>
<tr>
<td>10.6</td>
<td>Optimization Method Based on Evolutionary Algorithms</td>
<td>358</td>
</tr>
</tbody>
</table>
10.7 Results ................................................................. 361
10.7.1 Closed Path Generation. ................................. 361
10.7.2 Open Path Generation. ................................. 363
References .............................................................. 365

Appendix A: Position Kinematic Analysis. Trigonometric Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Appendix B: Freudenstein’s Method to Solve the Position Equations 
in a Four-Bar Mechanism ........................................... 373

Appendix C: Kinematic and Dynamic Analysis of a Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Fundamentals of Machine Theory and Mechanisms
Simón Mata, A.; Bataller Torras, A.; Cabrera Carrillo, J.A.; Ezquerro Juanco, F.; Guerra Fernández, A.J.; Nadal Martínez, F.; Ortiz Fernández, A.
2016, XI, 409 p. 345 illus., Hardcover
ISBN: 978-3-319-31968-1