Preface

Advanced Finite Element Technologies are essential for the solution of almost all problems in computational mechanics. One of the great attractions of the finite element method is its enormous range of applicability, which varies from classical subjects like mechanical, aerospace, automotive, and civil engineering, to new scientific disciplines like information technology, applied physics, or biomechanics. Due to the substantial developments in several fields, as for instance materials science, production methods or optimization processes, many engineering and mathematical approaches for novel finite elements were developed during the last decades. The growing demand for reliable, accurate, and highly efficient finite elements particularly in the field of nonlinearities has led to a number of interesting finite element formulations.

The CISM course on “Advanced Finite Element Technologies”, held in Udine from October 6 to 10, 2014, was addressed to master students, doctoral students, postdocs, and experienced researchers in engineering, applied mathematics, and materials science who wished to broaden their knowledge in e.g. advanced mixed Galerkin and least-squares FEM, discontinuous Galerkin methods as well as the related mathematical analysis.

It is our pleasure to thank the lecturers of the CISM course: Ferdinando Auricchio (Pavia, Italy), Antonio Huerta (Barcelona, Spain), Daya Reddy (Cape Town, South Africa), Gerhard Starke (Essen, Germany), as well as the additional contributors to these CISM lecture notes Adrien Lefieux (Atlanta, USA), Benjamin Müller (Essen, Germany), Alessandro Reali (München, Germany), Alexander Schwarz (Essen, Germany), Ruben Sevilla (Swansea, Wales), and Karl Steeger (Essen, Germany). We furthermore thank the 55 participants from 13 countries who made the course a success. Finally, we extend our thanks to the Rectors, the Board, and the staff of CISM for the excellent support and kind help.

Jörg Schröder
Peter Wriggers
Advanced Finite Element Technologies
Schröder, J.; Wriggers, P. (Eds.)
2016, VII, 236 p. 92 illus., 47 illus. in color., Hardcover
ISBN: 978-3-319-31923-0