Contents

1 Introduction ... 1
 1.1 Hydromechanics of the Pelton Turbine 2
 1.1.1 General Developments 2
 1.1.2 Development of Experimental Methods 3
 1.1.3 Development by Numerical CFD Methods 5
 1.1.4 Developments of the Analysis Methods 6
 1.1.5 Further Hydraulic Aspects 7
 1.2 Structural Mechanics of Pelton Turbines 7
 1.3 Objectives of This Reference Book 8
 References ... 9

2 Working Principle of Pelton Turbines 13
 2.1 Conversion of Hydraulic Energy into Mechanical Energy . 13
 2.2 Pelton Turbines and Specifications 17
 2.2.1 Geometric Specification of the Pelton Wheel 17
 2.2.2 Characteristic Hydromechanical Parameters 20
 2.2.3 Hydromechanical Specification of the Pelton Turbine 24
 2.2.4 Installation Form of Pelton Turbines 27
 2.2.5 Parameter Notations 28
 References ... 28

3 Injector Characteristics ... 29
 3.1 Flow Acceleration in the Injector Nozzle 30
 3.2 Discharge Coefficient \(\phi_{D0} \) and the Injector Characteristics . 32
 3.3 Discharge Coefficient \(\phi_{D} \) Referred to the Effective Nozzle Opening Area .. 35
 3.4 Reynolds Number Effect 37
 3.5 Flow Dynamic Forces and the Force Balance in the Injector ... 37
 3.5.1 Injectors with External Servomotor 38
 3.5.2 Injectors with an Internal Servomotor 46

References .. 9
4 Jet Characteristics and Measurements

4.1 Laser Doppler Anemometry
4.2 Axially Symmetric Jet Flow
4.3 Jet Expansion
4.4 Secondary Flows in the Jet and the Jet Stability

5 Interaction Between the Jet and Pelton Wheel

5.1 Jet Impingement on a Flat Plate
5.2 Minimum Number of Pelton Buckets
5.3 Water-Jet-Bucket Interaction and Its Specification
5.4 Coincidence and Symmetry Conditions
5.5 Number of Buckets of a Pelton Wheel
5.6 Relative Track of the Jet
5.7 Flow Detachment at the Cutting Edge of Bucket Cutout
5.8 Shockless Condition on the Bucket Rear Side
5.9 Shock Load Force and Related Power at Bucket Entries
5.9.1 Deflection of the Flow at the Bucket Main Splitter
5.9.2 Deflection of the Flow at the Bucket Cutout Edge
5.10 Effect of Eroded Main Splitters on Turbine Efficiency
5.10.1 Basic Model and Mechanism of Losses
5.10.2 Critical Width Ratio for Flow Detachment
5.10.3 Water Loss Related to Flow Deflection at Bucket Splitters
5.10.4 Comparison with Measurements
5.10.5 Negligible Impact Force on the Eroded Splitter Plane

6 Fluid Mechanics in the Rotating Bucket

6.1 Basic Equations
6.1.1 Equation of Motion
6.1.2 Water Film Rotation and Pressure Distribution Through the Sheet Height
6.2 Relative Fluid Flow and Invariance Equation
6.2.1 Influence of the Pressure Gradient Due to the Surface Curvature
6.2.2 Jet Layer Method
6.2.3 Invariance Equation and Euler Equation
6.2.4 Example: Relative Flow in a Semicircular Bucket
6.3 Effective Driving Forces and Related Powers
6.3.1 Centrifugal Force
6.3.2 Coriolis Force
18 Hydraulic Design of Pelton Turbines
18.1 Dimensioning of the Pelton Wheel
18.2 Elliptical Bucket Form

19 Multi-jet Pelton Turbines
19.1 Minimum Offset Angle Between Injectors
19.2 Injector Protection Shelter

20 Geometric and Hydraulic Similarities
20.1 Geometric Similarity
20.2 Hydraulic Similarity

21 Model Turbine Tests and Efficiency Scale-Up
21.1 Efficiency Scale-Up
21.2 Reynolds Number and Jet Impact Force

22 Sand Abrasion and Particle Motion in the Bucket Flow
22.1 Jet Spreading and Water-Sheet Flow in the Bucket
22.2 Motion Equation of Sand Particles
22.3 Application Example
22.3.1 Pelton Turbine and Bucket Form
22.3.2 Flow Distribution in the Bucket
22.3.3 Particle Motion in the Bucket
22.3.4 Extended Example
22.4 Simplification of Calculations

23 Bucket Mechanical Strength and Similarity Laws
23.1 Dynamic Tension in the Bucket Root Area
23.2 Similarity Laws in the Bucket Mechanical Loading

Appendix A: Nomenclature
Appendix B: Definition of Derived Parameters
Appendix C: Specific Speed and Application in Pelton Turbines
Appendix D: Specification of the Jet Piece for a Bucket
Appendix E: Specification of the Bucket Positions
Appendix F: Particle Motion Along the Streamlines in the Pelton Bucket

References
Index
Chapter 1
Introduction

In nature, hydraulic energy is a type of usable energy which can be directly converted into mechanical energy. It has since more than one hundred years mainly been utilized for the production of electricity. As a most important type of the renewable energy, hydraulic energy shows its very broad perspective in the future. More and more hydropower plants will be built or refurbished worldwide. In many countries, hydraulic energy will be the main source for producing electrical energy. In Norway, for example, almost the entire production of electricity is from the hydropower. According to the Swiss Federal Office of Energy (BFE 2004), the hydropower provides about 60% of the total electricity production in Switzerland.

The hydraulic energy in our nature exists in two main forms: the flowing water in rivers and the stored water in reservoirs. Accordingly, different types of hydraulic turbines are used for generating electricity.

Among various types of hydraulic turbines, the Pelton turbine (Fig. 1.1), which is also called the constant-pressure turbine, represents an important and probably also the most widely applied turbine type. The first Pelton turbine was invented by Lester Allan Pelton in 1879 and tested successfully. The turbine is mainly used in mountainous areas where the available water, for example, is stored in a lake or reservoir which lies a few hundred to 1800 m above the turbine machines. The turbine power ranges from several kilowatts to 400 MW (Angehrn 2000). In Switzerland and Austria, Pelton turbines are predominantly installed in the Alpine regions, most of them since more than 80 years ago.

A Pelton turbine essentially consists of a Pelton wheel with blades of the bucket form and one or more injectors that generate the high-speed jets when leaving the nozzle. The energy transfer from the high-speed jet onto the Pelton wheel is performed through the interaction between the jet and the rotating buckets. Based on this kind of hydraulic and mechanical interactions, the Pelton turbine technology is divided into hydromechanics and structural mechanics. Both categories represent a broad spectrum of state-of-the-art technologies and comprise the entire technical and engineering aspects like the efficiency, reliability, and lifetime. Thus, on the one hand, maximum hydraulic efficiency should be achieved in the design of the
Pelton Turbines
Zhang, Z.
2016, XIII, 311 p. 130 illus., 6 illus. in color., Hardcover
ISBN: 978-3-319-31908-7